Inhibition of Prolyl Hydroxylase Domain Proteins Promotes Therapeutic Revascularization

Author:

Loinard Céline1,Ginouvès Amandine1,Vilar José1,Cochain Clément1,Zouggari Yasmine1,Recalde Alice1,Duriez Micheline1,Lévy Bernard I.1,Pouysségur Jacques1,Berra Edurne1,Silvestre Jean-Sébastien1

Affiliation:

1. From the Paris Cardiovascular Research Center, INSERM U970, Hôpital Européen Georges Pompidou, Université Paris 5, Paris, France (C.L., J.V., C.C., Y.Z., A.R., M.D., B.I.L., J.S.); and Institute of Developmental Biology and Cancer, CNRS-UMR6543, University of Nice, Nice, France (A.G., J.P., E.B.). The present address for E.B. is Cell Biology and Stem Cells Unit, CICbioGUNE, Derio, Spain.

Abstract

Background— The hypoxia-inducible transcription factor (HIF) subunits are destabilized via the O 2 -dependent prolyl hydroxylase domain proteins (PHD1, PHD2, and PHD3). We investigated whether inhibition of PHDs via upregulating HIF might promote postischemic neovascularization. Methods and Results— Mice with right femoral artery ligation were treated, by in vivo electrotransfer, with plasmids encoding for an irrelevant short hairpin RNA (shRNA) (shCON [control]) or specific shRNAs directed against HIF-1α (shHIF-1α), PHD1 (shPHD1), PHD2 (shPHD2), and PHD3 (shPHD3). The silencing of PHDs induced a specific and transient downregulation of their respective mRNA and protein levels at day 2 after ischemia and, as expected, upregulated HIF-1α. As a consequence, 2 key hypoxia-inducible proangiogenic actors, vascular endothelial growth factor-A and endothelial nitric oxide synthase, were upregulated at the mRNA and protein levels. In addition, monocyte chemotactic protein-1 mRNA levels and infiltration of Mac-3-positive macrophages were enhanced in ischemic leg of mice treated with shPHD2 and shPHD3. Furthermore, activation of HIF-1α-related pathways was associated with changes in postischemic neovascularization. At day 14, silencing of PHD2 and PHD3 increased vessel density by 2.2- and 2.6-fold, capillary density by 1.8- and 2.1-fold, and foot perfusion by 1.2- and 1.4-fold, respectively, compared with shCON ( P <0.001). shPHD1 displayed a lower proangiogenic effect. Of interest, coadministration of shHIF-1α with shPHD3 abrogated shPHD3-related effects, suggesting that activation of endogenous HIF-1-dependent pathways mediated the proangiogenic effects of PHD silencing. Conclusions— We demonstrated that a direct inhibition of PHDs, and more particularly PHD3, promoted therapeutic revascularization. Furthermore, we showed that activation of the HIF-1 signaling pathway is required to promote this revascularization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3