Mutant Caveolin-3 Induces Persistent Late Sodium Current and Is Associated With Long-QT Syndrome

Author:

Vatta Matteo1,Ackerman Michael J.1,Ye Bin1,Makielski Jonathan C.1,Ughanze Enoh E.1,Taylor Erica W.1,Tester David J.1,Balijepalli Ravi C.1,Foell Jason D.1,Li Zhaohui1,Kamp Timothy J.1,Towbin Jeffrey A.1

Affiliation:

1. From the Department of Pediatrics (Cardiology), Baylor College of Medicine, Texas Children’s Hospital, Houston (M.V., E.E.U., E.W.T., Z.L., J.A.T.); Departments of Internal Medicine, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Cardiovascular Diseases and Pediatric Cardiology, Mayo Clinic College of Medicine, Rochester, Minn (M.J.A., D.J.T.); and Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin, Madison (B.Y., J.C.M., R.C.B.,...

Abstract

Background— Congenital long-QT syndrome (LQTS) is a primary arrhythmogenic syndrome stemming from perturbed cardiac repolarization. LQTS, which affects ≈1 in 3000 persons, is 1 of the most common causes of autopsy-negative sudden death in the young. Since the sentinel discovery of cardiac channel gene mutations in LQTS in 1995, hundreds of mutations in 8 LQTS susceptibility genes have been identified. All 8 LQTS genotypes represent primary cardiac channel defects (ie, ion channelopathy) except LQT4, which is a functional channelopathy because of mutations in ankyrin-B. Approximately 25% of LQTS remains unexplained pathogenetically. We have pursued a “final common pathway” hypothesis to elicit novel LQTS-susceptibility genes. With the recent observation that the LQT3-associated, SCN5A -encoded cardiac sodium channel localizes in caveolae, which are known membrane microdomains whose major component in the striated muscle is caveolin-3, we hypothesized that mutations in caveolin-3 may represent a novel pathogenetic mechanism for LQTS. Methods and Results— Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, we performed open reading frame/splice site mutational analysis on CAV3 in 905 unrelated patients referred for LQTS genetic testing. CAV3 mutations were engineered by site-directed mutagenesis and the molecular phenotype determined by transient heterologous expression into cell lines that stably express the cardiac sodium channel hNa v 1.5. We identified 4 novel mutations in CAV3 -encoded caveolin-3 that were absent in >1000 control alleles. Electrophysiological analysis of sodium current in HEK293 cells stably expressing hNa v 1.5 and transiently transfected with wild-type and mutant caveolin-3 demonstrated that mutant caveolin-3 results in a 2- to 3-fold increase in late sodium current compared with wild-type caveolin-3. Our observations are similar to the increased late sodium current associated with LQT3-associated SCN5A mutations. Conclusions— The present study reports the first CAV3 mutations in subjects with LQTS, and we provide functional data demonstrating a gain-of-function increase in late sodium current.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 444 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3