Ablation of C/EBP Homologous Protein Attenuates Endoplasmic Reticulum–Mediated Apoptosis and Cardiac Dysfunction Induced by Pressure Overload

Author:

Fu Hai Ying1,Okada Ken-ichiro1,Liao Yulin1,Tsukamoto Osamu1,Isomura Tadashi1,Asai Mitsutoshi1,Sawada Tamaki1,Okuda Keiji1,Asano Yoshihiro1,Sanada Shoji1,Asanuma Hiroshi1,Asakura Masanori1,Takashima Seiji1,Komuro Issei1,Kitakaze Masafumi1,Minamino Tetsuo1

Affiliation:

1. From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan (H.Y.F., K.-i.O., O.T., M.A., T.S., K.O., Y.A., S.T., I.K., T.M.); Department of Cardiovascular Surgery, Hayama Heart Center, Shimoyamaguchi, Hayama, Kanagawa, Japan (T.I.); Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan (S.S., H.A., M.A., M.K.); China-Japan Collaborative Laboratory of Cardiovascular Physiology, Department of...

Abstract

Background— Apoptosis may contribute to the development of heart failure, but the role of apoptotic signaling initiated by the endoplasmic reticulum in this condition has not been well clarified. Methods and Results— In myocardial samples from patients with heart failure, quantitative real-time polymerase chain reaction revealed an increase in messenger RNA for C/EBP homologous protein (CHOP), a transcriptional factor that mediates endoplasmic reticulum–initiated apoptotic cell death. We performed transverse aortic constriction or sham operation on wild-type (WT) and CHOP-deficient mice. The CHOP-deficient mice showed less cardiac hypertrophy, fibrosis, and cardiac dysfunction compared with WT mice at 4 weeks after transverse aortic constriction, although the contractility of isolated cardiomyocytes from CHOP-deficient mice was not significantly different from that in the WT mice. In the hearts of CHOP-deficient mice, phosphorylation of eukaryotic translation initiation factor 2α, which may reduce protein translation, was enhanced compared with WT mice. In the hearts of WT mice, CHOP-increased apoptotic cell death with activation of caspase-3 was observed at 4 weeks after transverse aortic constriction. In contrast, CHOP-deficient mice had less apoptotic cell death and lower caspase-3 activation at 4 weeks after transverse aortic constriction. Furthermore, the Bcl2/Bax ratio was decreased in WT mice, whereas this change was significantly blunted in CHOP-deficient mice. Real-time polymerase chain reaction microarray analysis revealed that CHOP could regulate several Bcl2 family members in failing hearts. Conclusions— We propose the novel concept that CHOP, which may modify protein translation and mediate endoplasmic reticulum–initiated apoptotic cell death, contributes to development of cardiac hypertrophy and failure induced by pressure overload.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3