Role of Pyruvate Dehydrogenase Inhibition in the Development of Hypertrophy in the Hyperthyroid Rat Heart

Author:

Atherton Helen J.1,Dodd Michael S.1,Heather Lisa C.1,Schroeder Marie A.1,Griffin Julian L.1,Radda George K.1,Clarke Kieran1,Tyler Damian J.1

Affiliation:

1. From the Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK (H.J.A., M.S.D., L.C.H., M.A.S., G.K.R., K.C., D.J.T.), and Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK (J.L.G.).

Abstract

Background— Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Methods and Results— Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg · kg −1 · d −1 ). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022±0.0002 versus 0.0055±0.0005 second −1 ; P =0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2- 13 C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100±20 versus 200±30 mg; P =0.04) despite no change in the increase observed in cardiac output. Conclusions— This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic flexibility of the hyperthyroid heart and reduce the level of hypertrophy that develops while maintaining the increased cardiac output required to meet the higher systemic metabolic demand.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3