Stimulation of phosphatidylinositol metabolism in the isolated, perfused rat heart.

Author:

Woodcock E A1,White L B1,Smith A I1,McLeod J K1

Affiliation:

1. Monash University Department of Medicine, Prince Henry's Hospital, Melbourne, Australia.

Abstract

Receptor-stimulated phosphatidylinositol turnover has been studied in isolated, perfused, [3H]inositol-labelled rat hearts by measuring accumulation of inositol phosphates in the presence of lithium chloride. Inositol phosphate accumulation was stimulated by norepinephrine (3 X 10(-5) M) and carbachol (10(-3) M), the increases averaging from 931 +/- 59 (n = 6, mean +/- SEM, cpm/g heart) to 4,165 +/- 609 (n = 6, p less than 0.01) for norepinephrine and to 1,853 +/- 354 (n = 6, p less than 0.05) for carbachol. The norepinephrine stimulation was antagonized by prazosin (10(-7) M) but not by propranolol (10(-7) M), indicating mediation via alpha 1-adrenoceptors. The carbachol stimulation was antagonized by atropine (10(-7) M). The stimulation by norepinephrine was significantly higher in right atria (837 +/- 151 to 6,614 +/- 1,210, n = 6, cpm/g tissue) than in other regions of the heart. Both norepinephrine and carbachol stimulated the formation of inositol monophosphate, inositol bisphosphate, and inositol trisphosphate with norepinephrine stimulation being detected as early as 15 seconds. Furthermore, the inositol trisphosphate was identified as the -1,4,5 isomer by anion exchange high-performance liquid chromatography. These data are consistent with the hydrolysis of phosphatidylinositol-(4,5)-bisphosphate yielding inositol-(1,4,5)-trisphosphate. Inositol-(1,3,4)-trisphosphate was not detected in heart preparations, suggesting unusual metabolism of inositol-(1,4,5)-trisphosphate in heart tissue.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3