Role of sarcoplasmic reticulum in arterial contraction: comparison of ryanodines's effect in a conduit and a muscular artery.

Author:

Ashida T1,Schaeffer J1,Goldman W F1,Wade J B1,Blaustein M P1

Affiliation:

1. Department of Physiology, University of Maryland School of Medicine, Baltimore 21201.

Abstract

Ryanodine interferes with sarcoplasmic reticulum function in various types of muscle; in vascular smooth muscle, it can inhibit contractions that depend on sarcoplasmic reticulum calcium release, probably by depleting the sarcoplasmic reticulum calcium store. We tested ryanodine and calcium channel blockers (verapamil, diltiazem, and nitrendipine) on small rings of rat thoracic aorta (RA) and bovine tail artery (BTA) to determine the relative contributions of sarcoplasmic reticulum calcium release and gated calcium entry to contractions induced by norepinephrine, caffeine, and 100 mM K depolarization. Ryanodine blocked caffeine contractions in both tissues and attenuated norepinephrine responses (by 52% in RA, 14% in BTA) but minimally altered potassium contractions. Calcium channel blockers almost completely abolished potassium contractions and reduced norepinephrine contractions (by 45% in RA, 82% in BTA) but hardly affected caffeine responses. The blocking effects of ryanodine and calcium channel antagonists on the norepinephrine responses were additive. Ryanodine had no effect on baseline tension in the standard media; however, when calcium extrusion via Na-Ca exchange was inhibited by low external sodium (0-calcium, low-sodium solution), tension increased progressively after introduction of ryanodine. This indicates that the sarcoplasmic reticulum calcium released by ryanodine then accumulated in the cytosol and activated contraction; restoration of external sodium caused prompt relaxation. The smaller effects of caffeine and ryanodine in BTA indicate that sarcoplasmic reticulum plays a less important role in calcium control in this tissue, with gated calcium entry dominating. These functional findings are correlated with electron-microscopic evidence that BTA has about 60% less sarcoplasmic reticulum than does RA. Ryanodine appears to be a useful tool for determining the functional relevance of sarcoplasmic reticulum for contraction in different arterial smooth muscles.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3