Relation between transmural deformation and local myofiber direction in canine left ventricle.

Author:

Waldman L K1,Nosan D1,Villarreal F1,Covell J W1

Affiliation:

1. Department of Medicine, University of California, San Diego, La Jolla 92093.

Abstract

To determine the relation between local myofiber anatomy and local deformation in the wall of the left ventricle, both three-dimensional transmural deformation and myofiber orientation were examined in the anterior free wall of seven canine left ventricles. Deformation was measured by imaging columns of implanted radiopaque markers with high-speed, biplane cineradiography (16 mm, 120 frames/sec). Hearts were fixed at end diastole and sectioned parallel to the local epicardial tangent plane to determine the transmural distribution of fiber directions at the site of strain measurement. The principal direction of deformation associated with the greatest shortening was compared with the local fiber direction in the outer (21 +/- 8% of the wall thickness from the epicardium) and inner (65 +/- 9%) halves of the wall. Although the fiber direction varied substantially with depth from the epicardium, the principal direction did not. In the outer half of the wall, fiber direction averaged -8 +/- 24 degrees, while the principal direction averaged -33 +/- 24 degrees from circumferential (counterclockwise angles are positive). In the inner half, fiber direction averaged 69 +/- 10 degrees, while the principal direction averaged -22 +/- 21 degrees. Therefore, while fiber and principal directions were not substantially different in the outer half, the greatest shortening occurred orthogonally to the fiber direction in the inner half. Normal and shear strains measured in a cardiac coordinate system (circumferential, longitudinal, and radial coordinates) were rotated (transformed) to "fiber" coordinates in both halves of the wall. In the outer half, normal strains observed in the fiber (-0.09 +/- 0.04) and cross-fiber (-0.04 +/- 0.04) directions were not significantly different (paired t test, p less than 0.05). In the inner half, more than twice as much strain occurred in the cross-fiber (-0.17 +/- 0.03) than in the fiber direction (-0.06 +/- 0.06). Moreover, the only shear strain that remained substantial after transformation was transverse shear in the plane of the fiber and radial coordinates. These results suggest that both reorientation and cross-sectional shape changes of myofibers or the interstitium may contribute to the large wall thickenings observed during contraction, particularly in the inner half of the ventricular wall.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference25 articles.

1. The collagen network of the heart;Caulfield JB;Lab Invest,1979

2. A variety of intercellular connections in heart muscle

3. Streeter DD: Gross morphology and fiber geometry of the heart in Berne RM (ed): Handbook of Physiology Section 2: The Cardiovascular System Volume I. Washington DC American Physiological Society 1979 pp 61-112

4. Fiber Orientation in the Canine Left Ventricle during Diastole and Systole

5. Carew TE Covell JW: Fiber orientation in the hypertrophied canine left ventricle. AmJPhysiol 1979;236:H487-H493

Cited by 279 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3