Immunological identification of five troponin T isoforms reveals an elaborate maturational troponin T profile in rabbit myocardium.

Author:

Anderson P A1,Oakeley A E1

Affiliation:

1. Department of Pediatrics, Duke University Medical Center, Durham, North Carolina.

Abstract

Myocardium is generally thought to express no more than two isoforms of troponin T (TnT). We have recently reported that TnT purified from rabbit myocardium is resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into five proteins (TnT1, TnT2, TnT3, TnT4, and TnT5). In this study, these proteins are characterized immunologically and a novel elaborate maturational profile is described. Myocardium was obtained from 23 days of gestation fetal rabbits and 2-day, 6-week, 3-month, and 6-month postnatal rabbits. The major species in the adult myocardium, TnT4, was identified on sodium dodecyl sulfate-polyacrylamide gels and excised. The protein was electroeluted and purified. An amino acid microsequence of a cleaved fragment of this protein was found to be virtually identical to residues 86-99 from adult rabbit cardiac TnT. The protein, TnT4, was used to raise a polyclonal antibody. This antibody recognized all five isoforms from purified cardiac TnT, but none of the TnT isoforms from fast skeletal muscle. A monoclonal antibody, Mab JLT-12, raised against a highly conserved epitope of rabbit fast skeletal muscle, recognized all five cardiac as well as five skeletal muscle isoforms. Western blots performed on intact myocardial preparations demonstrated that TnT1, the cardiac isoform with the slowest electrophoretic mobility, was expressed prominently in the immature hearts, in addition to TnT2, TnT3, and TnT4, but TnT1 was not evident in the 3-month and 6-month postnatal hearts. The expression of TnT2 also decreased with maturation. Thus, the number of TnT isoforms expressed in the rabbit decreases with maturation.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3