Anti-cholinergic effects of quinidine, disopyramide, and procainamide in isolated atrial myocytes: mediation by different molecular mechanisms.

Author:

Nakajima T1,Kurachi Y1,Ito H1,Takikawa R1,Sugimoto T1

Affiliation:

1. 2nd Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan.

Abstract

Effects of quinidine, disopyramide, and procainamide on the acetylcholine (ACh)-induced K+ channel current were examined in single atrial cells, using the tight-seal, whole-cell clamp technique. The pipette solution contained guanosine-5'-triphosphate (GTP) or guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma S, a nonhydrolysable GTP analogue). In GTP-loaded cells, not only ACh but also adenosine induced a specific K+ channel current via GTP-binding proteins (G) by activating muscarinic ACh or adenosine receptors. Quinidine and disopyramide depressed the ACh-induced K+ current quite effectively. Procainamide had a weak inhibitory effect. Quinidine also depressed adenosine-induced K+ current, while the effect of disopyramide on adenosine-induced current was much smaller than that on ACh-induced current. In GTP-gamma S-loaded cells, the K+ channel was uncoupled from the receptors and was activated irreversibly, probably due to direct activation of G proteins by GTP-gamma S. Quinidine depressed the GTP-gamma S-induced K+ current just as in the cases of ACh- and adenosine-induced currents of GTP-loaded cells. Disopyramide had only a weak inhibitory effect and procainamide showed no effect. From these results, it is strongly suggested that the major mechanisms underlying the anti-cholinergic effects of quinidine, disopyramide, and procainamide are different; quinidine may inhibit the muscarinic K+ channel itself and/or G proteins, while disopyramide and high doses of procainamide may mainly block functions of muscarinic ACh receptors in atrial myocytes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference27 articles.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3