Action potential transfer in cell pairs isolated from adult rat and guinea pig ventricles.

Author:

Weingart R1,Maurer P1

Affiliation:

1. Department of Physiology, University of Berne, Switzerland.

Abstract

An enzymatic procedure was used to obtain ventricular cells from adult rat and guinea pig hearts. Isolated pairs of cells were selected to study the action potential transfer from cell to cell and determine the resistance of the nexal membrane, rn. For this purpose, each cell of a cell pair was connected to a patch pipette so as to enable whole-cell, tight-seal recording. Normal impulse transmission was observed when rn ranged from 5-265 M omega. In these cases, the action potential in both cells occurred virtually simultaneously. An occasional failure in action potential transfer was seen in cell pairs whose rn had increased to 155-375 M omega. In these cases, the impulse transfer across the nexal membrane occurred with considerable delay. Impulse transfer was completely blocked once rn was larger than 780 M omega. Assuming a single connexon conductance of 100 pS, this would mean that more than 13 connexons are necessary to allow impulse transfer from cell to cell. Two single myocytes, gently pushed together, neither showed electrotonic interaction nor impulse transfer, thus rendering unlikely the possibility of an ephaptic signal transmission.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3