Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats.

Author:

Olivetti G1,Capasso J M1,Sonnenblick E H1,Anversa P1

Affiliation:

1. Department of Pathology, University of Parma, Italy.

Abstract

To determine whether acute left ventricular failure associated with myocardial infarction leads to architectural changes in the spared nonischemic portion of the ventricular wall, large infarcts were produced in rats, and the animals were killed 2 days after surgery. Left ventricular end-diastolic pressure was increased, whereas left ventricular dP/dt and systolic pressure were decreased, indicating the presence of severe ventricular dysfunction. Absolute infarct size, determined by measuring the fraction of myocyte nuclei lost from the left ventricular free wall, averaged 63%. Transverse midchamber diameter increased by 20%, and wall thickness diminished by 33%. The mural number of myocytes in this spared region of the left ventricular free wall decreased by 36% and the capillary profiles by 40%. The combination of these functional abnormalities and structural rearrangement of the wall resulted in a 7.8-fold increase in diastolic wall stress. A comparable analysis of the interventricular septum demonstrated a 24% reduction in the number of cells across the septal thickness, whereas capillaries were diminished by 26%. Moreover, a 7.2-fold elevation in diastolic stress was computed in this region of the ventricle. The augmentation in diastolic stress was associated with a 22% and a 16% myocyte cellular hypertrophy in the wall and septum, respectively. In conclusion, side-to-side slippage of myocytes in the myocardium occurs in association with ventricular dilatation after a large myocardial infarction and contributes to ventricular remodeling and the occurrence of decompensated eccentric hypertrophy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 348 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3