Metabolism of adenine nucleotides in human blood.

Author:

Coade S B1,Pearson J D1

Affiliation:

1. Section of Vascular Biology, MRC Clinical Research Centre, Harrow, Middlesex, England.

Abstract

Biologically active concentrations of potently vasoactive and platelet-active adenine nucleotides are generated in plasma by a variety of pathophysiological mechanisms. Although there is evidence that ATP and ADP are inactivated by endothelial ectonucleotidases, there has been little attempt to study the metabolic routes of their catabolism in blood or to assess the contribution of this process to their clearance in vivo. Therefore, we have studied the rates and patterns of catabolism of ATP, ADP, and AMP in whole blood, plasma, and isolated blood cells. Rates of degradation of each nucleotide in cell-free plasma ranged from 0.07-0.32 nmol/min/ml with 1 microM substrates to 1.1-3.6 nmol/min/ml with 100 microM substrates. The pattern of catabolism indicated that sequential dephosphorylation from ATP----ADP----AMP----adenosine occurs. In whole blood, the pattern was similar although ATP and ADP (but not AMP) breakdown was more rapid. This was due to leukocyte ectonucleotidase activity. The use of selective inhibitors demonstrated that catabolism was not due to nonspecific phosphatase activity and that plasma 5'-nucleotidase is distinct from ATPase or ADPase. In leukocytes, ATPase and ADPase activities were distinguishable, and each contributed substantially to the rates of catabolism in whole blood. Leukocyte 5'-nucleotidase did not measurably contribute to AMP dephosphorylation in blood. By comparison, ecto-ATPase and ecto-ADPase activities on cultured human umbilical vein endothelial cells were similar to those on leukocytes while endothelial 5'-nucleotidase per 10(6) cells was equivalent to the soluble activity in 1 ml of blood or plasma.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3