Conduction disturbances caused by high current density electric fields.

Author:

Yabe S1,Smith W M1,Daubert J P1,Wolf P D1,Rollins D L1,Ideker R E1

Affiliation:

1. Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

During internal defibrillation, potential gradients greater than 100 V/cm occur near defibrillation electrodes. Such strong fields may cause deleterious effects, including arrhythmias. This study determined 1) the effects of such strong fields on the propagation of activation and 2) whether these effects were different for monophasic and biphasic shocks. Voltages and potential gradients during the shock, as well as activation sequences before and after the shock, were mapped from 117 epicardial electrodes placed over a 3 x 3-cm area on the right ventricle in six dogs. Pacing at a cycle length of 350 msec was given from a long narrow electrode on the right side of the mapped area to generate parallel activation isochrones. A monophasic shock, 10 msec in duration, or a biphasic shock with both phases 5 msec in duration was delivered 300 msec after the last paced stimulus via a mesh electrode on the left side of the mapped area as the cathode, with the anode on the right atrium. Shocks of 70-850 V were given, and the potential gradient and current density at each recording electrode were calculated from the measured potentials and fiber orientation by using a finite element method. Pacing was resumed 200 msec after the shock, and activation sequences were mapped for up to 5 minutes. Potential gradients ranged from 1 to 189 V/cm with high fields on the left side and low fields on the right side of the mapped area. Where the potential gradient was weak, the first activation sequence after the shock was similar to that before the shock, but activation blocked without conducting into areas where the gradient was greater than 64 +/- 4 (mean +/- SD) V/cm for monophasic and greater than 71 +/- 6 V/cm for biphasic shocks. These values are significantly different (p less than 0.003). The higher the potential gradient, the longer was the duration of block before conduction returned. Block duration, however, was generally shorter for biphasic than for monophasic waveforms of the same field strength. In conclusion, conduction block can follow either waveform, but biphasic waveforms cause less block than monophasic waveforms. This effect may partially explain the increased defibrillation efficacy of biphasic shocks.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference54 articles.

1. The potential gradient field created by epicardial defibrillation electrodes in dogs.

2. Cardiac potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation (abstract);Wharton JM;PACE,1987

3. Importance of the shock electric field for defibrillation efficacy (abstract);Zhou X;Circulation,1988

4. Response of cultured myocardial cells to countershock-type electric field stimulation;Jones JL;Am J Physiol,1978

5. Postshock arrhythmias—a possible cause of unsuccessful defibrillation

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3