Nitric Oxide Induces Dilation of Rat Aorta via Inhibition of Rho-Kinase Signaling

Author:

Chitaley Kanchan1,Webb R. Clinton1

Affiliation:

1. From the Department of Physiology (R.C.W.), Medical College of Georgia, Augusta, and the Department of Physiology (K.C.), University of Michigan, Ann Arbor.

Abstract

NO induces vasodilation through cGMP-dependent protein kinase–dependent and –independent mechanisms. A recent study demonstrated that recombinant cGMP-dependent protein kinase can phosphorylate the small G protein, RhoA, thus inhibiting its activity. Additionally, sodium nitroprusside was found to reverse the phenylephrine-induced translocation of RhoA, which is further indicative of the inhibition of RhoA activity. RhoA is known to be involved in the Ca 2+ sensitization of vascular smooth muscle through the actions of one of its downstream effectors, Rho-kinase. This study examined whether NO endogenously induces the relaxation of intact rat aorta via the inhibition of the Rho-kinase–mediated Ca 2+ -sensitizing pathway. Endogenous Rho-kinase inhibitor activity was inhibited by the selective compound Y-27632. Treatment of endothelium-intact rat aorta with Y-27632 (1 μmol/L) resulted in an attenuation of maximal force generated in response to phenylephrine. In endothelium-denuded rings, however, 1 μmol/L Y-27632 was ineffective at inhibiting the phenylephrine-induced contraction. Additionally, 1 μmol/L Y-27632 was significantly less effective at inhibiting the phenylephrine-induced contraction of endothelium-intact rings in the presence of inhibitors of NO synthase or guanylate cyclase ( N ω -nitro- l -arginine and 1 H -[1,2,4]oxadiazolo-[4,3- a ]quinoxalin-1-one, respectively). Interestingly, sodium nitroprusside restored the ability of 1 μmol/L Y-27632 to attenuate phenylephrine-induced contraction. Rho-kinase inhibition was also found to increase the sensitivity of the endothelium-denuded aorta to sodium nitroprusside. These data demonstrate that NO inhibits Rho-kinase activity in the intact rat aorta, supporting the hypothesis that endogenous NO-mediated vasodilation occurs through the inhibition of Rho-kinase constrictor activity in the intact rat aorta.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3