Role of the Cerebrovascular and Metabolic Responses in the Delayed Phases of Injury After Transient Cerebral Ischemia in Fetal Sheep

Author:

Raad Ronnie Abi1,Tan William K. M.1,Bennet Laura1,Gunn Alistair J.1,Davis Suzanne L.1,Gluckman Peter D.1,Johnston Barbara M.1,Williams Christopher E.1

Affiliation:

1. From the Research Centre for Developmental Medicine and Biology, School of Medicine, University of Auckland, New Zealand.

Abstract

Background and Purpose —Perinatal hypoxic-ischemic injuries can trigger a cascade of events leading to delayed deterioration and cell death several hours later. The objective of this study was to characterize the cerebral blood flow responses and the changes in extracellular glucose and lactate during the delayed phases of injury and to determine their relationships with the pathophysiological events after hypoxic-ischemic injury. Methods —Two groups of near-term chronically instrumented fetal sheep were subjected to 30 minutes of cerebral hypoperfusion. In the first group, regional cerebral blood flow was measured over the next 24 hours with radiolabeled microspheres. In the second, cortical extracellular glucose and lactate were measured by microdialysis. Parietal electrocorticographic activity and cortical impedance were recorded continuously in both groups, and the extent of neuronal loss was determined histologically at 72 hours after injury. Results —Cerebral blood flow was transiently impaired in the cortex during reperfusion, whereas during the delayed phase, there was a marked increase in cerebral blood flow. The severity of cortical neuronal loss was related to the degree of hypoperfusion in the immediate reperfusion period and inversely related to the magnitude of the delayed hyperperfusion. Cortical extracellular lactate was elevated after injury, and both glucose and lactate secondarily increased during the delayed phase of injury. Conclusions —The delayed phase is accompanied by a period of hyperperfusion that may protect marginally viable tissue.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3