Activation of Rac1-Mineralocorticoid Receptor Pathway Contributes to Renal Injury in Salt-Loaded db/db Mice

Author:

Hirohama Daigoro12ORCID,Nishimoto Mitsuhiro13ORCID,Ayuzawa Nobuhiro1ORCID,Kawarazaki Wakako1ORCID,Fujii Wataru2,Oba Shigeyoshi1,Shibata Shigeru12,Marumo Takeshi14,Fujita Toshiro156ORCID

Affiliation:

1. Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Japan (D.H., M.N., N.A., W.K., S.O., S.S., T.M., T.F.).

2. Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan (D.H., W.F., S.S.).

3. Department of Internal Medicine, International University of Health and Welfare Mita Hospital, Tokyo, Japan (M.N.).

4. Department of Pharmacology, School of Medicine, International University of Health and Welfare, Chiba, Japan (T.M.).

5. Shinshu University School of Medicine (T.F.), Shinshu University, Nagano, Japan.

6. Research Center for Social Systems (T.F.), Shinshu University, Nagano, Japan.

Abstract

The progression of diabetic kidney disease (DKD), a leading cause of end-stage kidney disease, involves mineralocorticoid receptor (MR) activation. We previously identified crosstalk between the small guanosine triphosphatase (GTPase) RAS-related C3 botulinus toxin substrate 1 (Rac1) and MR, but the role of Rac1-MR pathway activation in the progression of DKD is not clear. We performed uninephrectomy on type 2 diabetic mouse models, db/db (UNx-high salt [HS] db/db ), and their lean control, db/m (UNx-HS db/m ), at 4-week postpartum, and fed them a high-salt diet for 10 weeks. To evaluate the involvement of the Rac1-MR pathway in the DKD progression, we investigated the effects of the nonsteroidal MR antagonist, finerenone, and the Rac1 inhibitor, NSC23766, on blood pressure and glomerular injury in UNx-HS db/db mice. UNx-HS db/db mice with hyperaldosteronism showed hypertension and hypokalemia with increased cleaved α-epithelial sodium channel expressions and massive albuminuria, accompanied by glomerular injury with nodular lesions, which is a characteristic finding in human diabetic nephropathy. Expressions of active Rac1 and serum-and glucocorticoid-induced protein kinase 1 (Sgk1), a downstream molecule of MR signaling, in the renal cortex and isolated glomeruli, significantly elevated in UNx-HS db/db mice, associated with intense staining of active Rac1 in glomerular podocytes, but both hypertension and renal injury were ameliorated by NSC23766 and finerenone, associated with Sgk1 inhibition, suggesting that Rac1-MR activation contributes to hypertension and podocyte injury. In conclusion, salt-induced activation of Rac1-MR pathway in distal tubules and glomeruli is involved in DKD progression through hypertension and glomerular injury, respectively. This finding highlights MR antagonism along with Rac1 inhibition as a novel strategy for DKD treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3