Loss of Arhgef11 in the Dahl Salt-Sensitive Rat Protects Against Hypertension-Induced Renal Injury

Author:

Johnson Ashley C.1,Wu Wenjie1,Attipoe Esinam M.1,Sasser Jennifer M.1,Taylor Erin B.2,Showmaker Kurt C.1,Kyle Patrick B.3,Lindsey Merry L.2,Garrett Michael R.14

Affiliation:

1. From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center.

2. Department of Physiology (E.B.T., M.L.L.), University of Mississippi Medical Center.

3. Department of Pathology (P.B.K.), University of Mississippi Medical Center.

4. Department of Medicine (Nephrology) (M.R.G.), University of Mississippi Medical Center.

Abstract

Arhgef11 is a Rho-guanine nucleotide exchange factor that was previously implicated in kidney injury in the Dahl salt-sensitive (SS) rat, a model of hypertension-related chronic kidney disease. Reduced Arhgef11 expression in an SS- Arhgef11 SHR -minimal congenic strain (spontaneously hypertensive rat allele substituted for S allele) significantly decreased proteinuria, fibrosis, and improved renal hemodynamics, without impacting blood pressure compared with the control SS (SS-wild type). Here, SS- Arhgef11 −/− and SS-wild type rats were placed on either low or elevated salt (0.3% or 2% NaCl) from 4 to 12 weeks of age. On low salt, starting at week 6 and through week 12, SS- Arhgef11 −/− animals demonstrated a 3-fold decrease in proteinuria compared with SS-wild type. On high salt, beginning at week 6, SS- Arhgef11 −/− animals demonstrated >2-fold lower proteinuria from weeks 8 to 12 and 30 mm Hg lower BP compared with SS-wild type. To better understand the molecular mechanisms of the renal protection from loss of Arhgef11 , both RNA sequencing and discovery proteomics were performed on kidneys from week 4 (before onset of renal injury/proteinuria between groups) and at week 12 (low salt). The omics data sets revealed loss of Arhgef11 (SS- Arhgef11 −/− ) initiates early transcriptome/protein changes in the cytoskeleton starting as early as week 4 that impact a number of cellular functions, including actin cytoskeletal regulation, mitochondrial metabolism, and solute carrier transporters. In summary, in vivo phenotyping coupled with a multi-omics approach provides strong evidence that increased Arhgef11 expression in the Dahl SS rat leads to actin cytoskeleton-mediated changes in cell morphology and cell function that promote kidney injury, hypertension, and decline in kidney function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference68 articles.

1. Centers for Disease Control and Prevention. Chronic Kidney Disease Surveillance System—United States. 2019. http://www.cdc.gov/ckd.

2. Defining Incident Chronic Kidney Disease in the Research Setting: The ARIC Study

3. Risk factors for chronic kidney disease: an update

4. Monogenic causes of chronic kidney disease in adults

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3