Comparative Studies of Renin-Null Zebrafish and Mice Provide New Functional Insights

Author:

Hoffmann Scott1,Mullins Linda1ORCID,Rider Sebastien12,Brown Cara1,Buckley Charlotte B.13,Assmus Adrienne1ORCID,Li Ziwen1ORCID,Sierra Beltran Mariana4,Henderson Neil45,del Pozo Jorge6,De Goes Martini Alexandre7,Sequeira-Lopez Maria Luisa S.7ORCID,Gomez R. Ariel7,Mullins John1

Affiliation:

1. Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen’s Medical Research Institute, The University of Edinburgh, United Kingdom.

2. Now with DSM Nutritional Products Ltd, Switzerland (S.R.).

3. Now with Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (C.B.B.).

4. Centre for Inflammation Research (M.S.B., N.H.), The Queen’s Medical Research Institute, The University of Edinburgh, United Kingdom.

5. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom (N.H.).

6. Veterinary Pathology, Royal (Dick)School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush Campus, United Kingdom (J.d.P.).

7. Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville (A.D.G.M., M.L.S.S.-L., R.A.G.).

Abstract

Background: The renin-angiotensin system is highly conserved across vertebrates, including zebrafish, which possess orthologous genes coding for renin-angiotensin system proteins, and specialized mural cells of the kidney arterioles, capable of synthesising and secreting renin. Methods: We generated zebrafish with CRISPR-Cas9-targeted knockout of renin ( ren −/− ) to investigate renin function in a low blood pressure environment. We used single-cell (10×) RNA sequencing analysis to compare the transcriptome profiles of renin lineage cells from mesonephric kidneys of ren −/− with ren +/+ zebrafish and with the metanephric kidneys of Ren1 c −/− and Ren1 c +/+ mice. Results: The ren −/− larvae exhibited delays in larval growth, glomerular fusion and appearance of a swim bladder, but were viable and withstood low salinity during early larval stages. Optogenetic ablation of renin-expressing cells, located at the anterior mesenteric artery of 3-day-old larvae, caused a loss of tone, due to diminished contractility. The ren −/− mesonephric kidney exhibited vacuolated cells in the proximal tubule, which were also observed in Ren1 c −/− mouse kidney. Fluorescent reporters for renin and smooth muscle actin ( Tg(ren:LifeAct-RFP; acta2:EGFP )), revealed a dramatic recruitment of renin lineage cells along the renal vasculature of adult ren −/− fish, suggesting a continued requirement for renin, in the absence of detectable angiotensin metabolites, as seen in the Ren1 YFP Ren1 c −/− mouse. Both phenotypes were rescued by alleles lacking the potential for glycosylation at exon 2, suggesting that glycosylation is not essential for normal physiological function. Conclusions: Phenotypic similarities and transcriptional variations between mouse and zebrafish renin knockouts suggests evolution of renin cell function with terrestrial survival.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3