Resolvin E1/ChemR23 Protects Against Hypertension and Vascular Remodeling in Angiotensin II–Induced Hypertensive Mice

Author:

Zhang Jishou123ORCID,Yin Zheng123,Xu Yao123,Wei Cheng123ORCID,Peng Shanshan123ORCID,Zhao Mengmeng123,Liu Jianfang123,Xu Shuwan123,Pan Wei123ORCID,Zheng Zihui123,Liu Siqi123,Ye Jing123,Qin Juan-Juan14ORCID,Wan Jun123ORCID,Wang Menglong123ORCID

Affiliation:

1. Department of Cardiology, Renmin Hospital, Department of Geriatrics, Zhongnan Hospital, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.-J.Q., J.W., M.W.).

2. Cardiovascular Research Institute, Wuhan University, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.).

3. Hubei Key Laboratory of Cardiology, Wuhan, China (J.Z., Z.Y., Y.X., C.W., S.P., M.Z., J.L., S.X., W.P., Z.Z., S.L., J.Y., J.W., M.W.).

4. Center for Healthy Aging, Wuhan University School of Nursing, China (J.-J.Q.).

Abstract

BACKGROUND: Inflammation plays a critical role in the development of hypertension and vascular remodeling. Resolvin E1 (RvE1), as one of the specialized proresolving lipid mediators, promotes inflammation resolution by binding with a G protein-coupled receptor, ChemR23 (chemerin receptor 23). However, whether RvE1/ChemR23 regulates hypertension and vascular remodeling is unknown. METHODS: Hypertension in mice was induced by Ang II (angiotensin II) infusion (750 ng/kg per minute), and RvE1 (2 µg/kg per day) was administered through intraperitoneal injection. Loss of ChemR23 was achieved by mice receiving intravenous injection of adeno-associated virus 9-encoding shRNA against ChemR23. RESULTS: Aortic ChemR23 expression was increased in Ang II-induced hypertensive mice and that ChemR23 was mainly expressed on vascular smooth muscle cells (VSMCs). RvE1 lowered blood pressure, reduced aortic media thickness, attenuated aortic fibrosis, and mitigated VSMC phenotypic transformation and proliferation in hypertensive mice, which were all reversed by the knockdown of ChemR23. Moreover, RvE1 reduced the aortic infiltration of macrophages and T cells, which was also reversed by ChemR23 knockdown. RvE1 inhibited Ccl5 expression in VSMCs via the AMPKα (AMP-activated protein kinase α)/Nrf2 (nuclear factor E2-related factor 2)/canonical NF-κB (nuclear factor κB) pathway, thereby reducing the infiltration of macrophages and T cells. The AMPKα/Nrf2 pathway also mediated the effects of RvE1 on VSMC phenotypic transformation and proliferation. In patients with hypertension, the serum levels of RvE1 and other eicosapentaenoic acid-derived metabolites were significantly decreased. CONCLUSIONS: RvE1/ChemR23 ameliorated hypertension and vascular remodeling by activating AMPKα/Nrf2 signaling, which mediated immune cell infiltration by inhibiting the canonical NF-κB/Ccl5 pathway, and regulated VSMC proliferation and phenotypic transformation. RvE1/ChemR23 may be a potential therapeutic target for hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3