Hypertension Programmed in Adult Hens by Isolated Effects of Developmental Hypoxia In Ovo

Author:

Skeffington Katie L.1,Beck Christian1,Itani Nozomi1,Niu Youguo1,Shaw Caroline J.12,Giussani Dino A.1ORCID

Affiliation:

1. From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (K.L.S., C.B., N.I., Y.N., C.J.S., D.A.G.)

2. Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, United Kingdom (C.J.S.).

Abstract

In mammals, pregnancy complicated by chronic hypoxia can program hypertension in the adult offspring. However, mechanisms remain uncertain because the partial contributions of the challenge on the placenta, mother, and fetus are difficult to disentangle. Here, we used chronic hypoxia in the chicken embryo—an established model system that permits isolation of the direct effects of developmental hypoxia on the cardiovascular system of the offspring, independent of additional effects on the mother or the placenta. Fertilized chicken eggs were exposed to normoxia (N; 21% O 2 ) or hypoxia (H; 13.5%–14% O 2 ) from the start of incubation (day 0) until day 19 (hatching, ≈day 21). Following hatching, all birds were maintained under normoxic conditions until ≈6 months of adulthood. Hypoxic incubation increased hematocrit (+27%) in the chicken embryo and induced asymmetrical growth restriction (body weight, −8.6%; biparietal diameter/body weight ratio, +7.5%) in the hatchlings (all P <0.05). At adulthood (181±4 days), chickens from hypoxic incubations remained smaller (body weight, −7.5%) and showed reduced basal and stimulated in vivo NO bioavailability (pressor response to NG-nitro-L-arginine methyl ester, −43%; phenylephrine pressor response during NO blockade, −61%) with significant hypertension (mean arterial blood pressure, +18%), increased cardiac work (ejection fraction, +12%; fractional shortening, +25%; enhanced baroreflex gain, +456%), and left ventricular wall thickening (left ventricular wall volume, +36%; all P <0.05). Therefore, we show that chronic hypoxia can act directly on a developing embryo to program hypertension, cardiovascular dysfunction, and cardiac wall remodeling in adulthood in the absence of any maternal or placental effects.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3