Preeclampsia Prediction Using Machine Learning and Polygenic Risk Scores From Clinical and Genetic Risk Factors in Early and Late Pregnancies

Author:

Kovacheva Vesela P.1ORCID,Eberhard Braden W.1ORCID,Cohen Raphael Y.12ORCID,Maher Matthew3,Saxena Richa34ORCID,Gray Kathryn J.53ORCID

Affiliation:

1. Department of Anesthesiology, Perioperative and Pain Medicine (V.P.K., B.W.E., R.Y.C.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.

2. PathAI, Boston, MA (R.Y.C.).

3. Department of Anesthesia, Critical Care and Pain Medicine, Center for Genomic Medicine, Massachusetts General Hospital, Boston (M.M., R.S., K.J.G.).

4. Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (R.S.).

5. Division of Maternal-Fetal Medicine (K.J.G.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.

Abstract

BACKGROUND: Preeclampsia, a pregnancy-specific condition associated with new-onset hypertension after 20-weeks gestation, is a leading cause of maternal and neonatal morbidity and mortality. Predictive tools to understand which individuals are most at risk are needed. METHODS: We identified a cohort of N=1125 pregnant individuals who delivered between May 2015 and May 2022 at Mass General Brigham Hospitals with available electronic health record data and linked genetic data. Using clinical electronic health record data and systolic blood pressure polygenic risk scores derived from a large genome-wide association study, we developed machine learning (XGBoost) and logistic regression models to predict preeclampsia risk. RESULTS: Pregnant individuals with a systolic blood pressure polygenic risk score in the top quartile had higher blood pressures throughout pregnancy compared with patients within the lowest quartile systolic blood pressure polygenic risk score. In the first trimester, the most predictive model was XGBoost, with an area under the curve of 0.74. In late pregnancy, with data obtained up to the delivery admission, the best-performing model was XGBoost using clinical variables, which achieved an area under the curve of 0.91. Adding the systolic blood pressure polygenic risk score to the models did not improve the performance significantly based on De Long test comparing the area under the curve of models with and without the polygenic score. CONCLUSIONS: Integrating clinical factors into predictive models can inform personalized preeclampsia risk and achieve higher predictive power than the current practice. In the future, personalized tools can be implemented to identify high-risk patients for preventative therapies and timely intervention to improve adverse maternal and neonatal outcomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3