A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage

Author:

Yu Nannan1,Yu He1ORCID,Li Haonan2,Ma Nannan3,Hu Chunai3ORCID,Wang Jia2ORCID

Affiliation:

1. Department of Artificial Intelligence, School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, China (N.Y., H.Y.).

2. Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, China (H.L., J.W.).

3. Radiology Department, Xuzhou Central Hospital, China (N.M., C.H.).

Abstract

Background and Purpose: Hematoma volume (HV) is a significant diagnosis for determining the clinical stage and therapeutic approach for intracerebral hemorrhage (ICH). The aim of this study is to develop a robust deep learning segmentation method for the fast and accurate HV analysis using computed tomography. Methods: A novel dimension reduction UNet (DR-UNet) model was developed for computed tomography image segmentation and HV measurement. Two data sets, 512 ICH patients with 12 568 computed tomography slices in the retrospective data set and 50 ICH patients with 1257 slices in the prospective data set, were used for network training, validation, and internal and external testing. Moreover, 13 irregular hematoma cases, 11 subdural and epidural hematoma cases, and 50 different HV cases into 3 groups (<30, 30–60, and >60 mL) were selected to further evaluate the robustness of DR-UNet. The image segmentation performance of DR-UNet was compared with those of UNet, the fuzzy clustering method, and the active contour method. The HV measurement performance was compared using DR-UNet, UNet, and the Coniglobus formula method. Results: Using DR-UNet, the segmentation model achieved a performance similar to that of expert clinicians in 2 independent test data sets containing internal testing data (Dice of 0.861±0.139) and external testing data (Dice of 0.874±0.130). The HV measurement derived from DR-UNet was strongly correlated with that from manual segmentation (R 2 =0.9979; P <0.0001). In the irregularly shaped hematoma group and the subdural and epidural hematoma group, DR-UNet was more robust than UNet in both hematoma segmentation and HV measurement. There is no statistical significance in segmentation accuracy among 3 different HV groups. Conclusions: DR-UNet can segment hematomas from the computed tomography scans of ICH patients and quantify the HV with better accuracy and greater efficiency than the main existing methods and with similar performance to expert clinicians. Due to robust performance and stable segmentation on different ICHs, DR-UNet could facilitate the development of deep learning systems for a variety of clinical applications.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3