Progression of White Matter Hyperintensities Preceded by Heterogeneous Decline of Microstructural Integrity

Author:

van Leijsen Esther M.C.1,Bergkamp Mayra I.1,van Uden Ingeborg W.M.1,Ghafoorian Mohsen23,van der Holst Helena M.4,Norris David G.56,Platel Bram2,Tuladhar Anil M.1,de Leeuw Frank-Erik1

Affiliation:

1. From the Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Donders Center for Medical Neuroscience (E.M.C.v.L., M.I.B., I.W.M.v.U., A.M.T., F.-E.d.L.)

2. Department of Radiology and Nuclear Medicine, Diagnostic Image Analysis Group (M.G., B.P.), Radboud University Medical Center, Nijmegen, the Netherlands

3. Institute for Computing and Information Sciences (M.G.)

4. Department of Neurology, Jeroen Bosch Ziekenhuis, ‘s-Hertogenbosch, the Netherlands (H.M.v.d.H.)

5. Donders Institute for Brain, Cognition, and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands

6. Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Germany (D.G.N.).

Abstract

Background and Purpose— White matter hyperintensities (WMH) are frequently seen on neuroimaging of elderly and are associated with cognitive decline and the development of dementia. Yet, the temporal dynamics of conversion of normal-appearing white matter (NAWM) into WMH remains unknown. We examined whether and when progression of WMH was preceded by changes in fluid-attenuated inversion recovery and diffusion tensor imaging values, thereby taking into account differences between participants with mild versus severe baseline WMH. Methods— From 266 participants of the RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort), we semiautomatically segmented WMH at 3 time points for 9 years. Images were registered to standard space through a subject template. We analyzed differences in baseline fluid-attenuated inversion recovery, fractional anisotropy, and mean diffusivity (MD) values and changes in MD values over time between 4 regions: (1) remaining NAWM, (2) NAWM converting into WMH in the second follow-up period, (3) NAWM converting into WMH in the first follow-up period, and (4) WMH. Results— NAWM converting into WMH in the first or second time interval showed higher fluid-attenuated inversion recovery and MD values than remaining NAWM. MD values in NAWM converting into WMH in the first time interval were similar to MD values in WMH. When stratified by baseline WMH severity, participants with severe WMH had higher fluid-attenuated inversion recovery and MD and lower fractional anisotropy values than participants with mild WMH, in all areas including the NAWM. MD values in WMH and in NAWM that converted into WMH continuously increased over time. Conclusions— Impaired microstructural integrity preceded conversion into WMH and continuously declined over time, suggesting a continuous disease process of white matter integrity loss that can be detected using diffusion tensor imaging even years before WMH become visible on conventional neuroimaging. Differences in microstructural integrity between participants with mild versus severe WMH suggest heterogeneity of both NAWM and WMH, which might explain the clinical variability observed in patients with similar small vessel disease severity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3