Prevention of postischemic cardiac injury by the orally active iron chelator 1,2-dimethyl-3-hydroxy-4-pyridone (L1) and the antioxidant (+)-cyanidanol-3.

Author:

van der Kraaij A M1,van Eijk H G1,Koster J F1

Affiliation:

1. Department of Biochemistry, Erasmus University Rotterdam, The Netherlands.

Abstract

In this study, we investigated the role of oxygen-derived free radicals and iron in mediating myocardial injury during ischemia and reperfusion. Iron is of special interest because it may enhance tissue injury during ischemia and reperfusion by catalyzing the formation of highly reactive hydroxyl radicals (by modified Haber-Weiss or Fenton reactions). Rat hearts, perfused by the Langendorff method, were subjected to global ischemia (15 minutes at 37 degrees C) and reperfusion. The effects of two iron chelators, 1,2-dimethyl-3-hydroxy-4-pyridone (L1) and 5-hydroxy-2-hydroxymethyl-4-pyrone (kojic acid), and one antioxidant, (+)-cyanidanol-3, on contractile function, coronary flow, lactate dehydrogenase release, and lactate production were studied. The combination of these iron chelators is of special importance because L1 is known to prevent lipid peroxidation, induced by ADP/Fe3+ and NADPH in microsomes, in contrast to kojic acid. We found significant protection of contractile function (apex displacement) during reperfusion with 50 microM L1 and 20 microM (+)-cyanidanol-3 (p less than 0.01, n = 6), whereas no protection was found with 50 microM kojic acid (n = 6). Measurements of lactate dehydrogenase release during reperfusion showed a protective pattern similar to that found for heart contractile function, although 50 microM kojic acid also showed a significantly lower lactate dehydrogenase release during the first 10 minutes of reperfusion. No differences in coronary resistance or lactate release were found between the various groups. Our findings indicate that iron and oxygen-derived free radicals are important in the pathogenesis of postischemic reperfusion injury probably because of the formation of hydroxyl radicals.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3