Premature escape beats induced by overdrive pacing in canine Purkinje fibers. Evidence for the role of normal automaticity as an underlying cellular mechanism.

Author:

Viamonte V A1,Rosen M R1

Affiliation:

1. Department of Pharmacology, Columbia University, College of Physicians and Surgeons, New York, NY 10032.

Abstract

Premature escape beats induced in conscious dogs with chronic complete atrioventricular block have been defined as escape beats occurring on cessation of overdrive pacing and having a coupling interval to the last paced beat shorter than the coupling interval between the premature escape beat and the second postpacing beat. Triggered activity has been proposed as the primary underlying mechanism. We used standard microelectrode techniques to study the effects of overdrive pacing on normal automatic canine Purkinje fibers to determine if premature escape beats could be induced and if so, to define the underlying cellular mechanism(s). For this purpose, we overdrive-paced Purkinje fibers for 10 and 50 seconds and for 10 and 50 beats at a pacing cycle length (PCL) of 1,000-200 msec. In addition, to help distinguish among major arrhythmogenic mechanisms, we used a matrix of drugs consisting of propranolol, nadolol, lidocaine, ethmozin, and doxorubicin. Fifty-second stimulation trains induced "classic" overdrive suppression of the first three postpacing impulses, whereas 10-second overdrive pacing induced significant overdrive suppression only at a PCL of 200 msec. With 50-beat overdrive pacing and a PCL of 1,000-600 msec, there was overdrive suppression of postpacing impulses, whereas reduced overdrive suppression was observed at a PCL of 400-200 msec. Ten-beat stimulation trains induced a "flat response" of postpacing impulses. Ten- and 50-beat overdrive pacing provoked premature escape beats in 66% of the fibers, with the higher incidence at a PCL of 200 msec for 50-beat stimulation trains. No shortening of the coupling interval of premature escape beats was observed at faster pacing rates. Only lidocaine (which suppresses normal automaticity) abolished premature escape beats. We conclude that normal automaticity is the most likely mechanism underlying premature escape beats in Purkinje fibers with high levels of membrane potential.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3