Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension.

Author:

Linder L1,Kiowski W1,Bühler F R1,Lüscher T F1

Affiliation:

1. Department of Medicine, University Hospital, Basel, Switzerland.

Abstract

In isolated blood vessels, acetylcholine releases endothelium-derived relaxing factor (EDRF). In vivo, the vasodilator action of acetylcholine may be mediated by EDRF, but prostacyclin or prejunctional inhibition of adrenergic neurotransmission may also be involved. Therefore, we investigated whether acetylcholine releases EDRF in humans in vivo and, if so, whether the response altered in essential hypertension. Acetylcholine was infused into the brachial artery, and forearm blood flow measured by venous occlusion plethysmography. In control subjects, acetylcholine (0.02-16 micrograms/min/100 ml tissue) increased flow from 2.4 +/- 5.0 to 20.6 +/- 5.2 ml/min/100 ml tissue (n = 14; p less than 0.05) and decreased forearm vascular resistance from 42.0 +/- 4.1 to 6.0 +/- 1.4 units (p less than 0.03), a response comparable to that of sodium nitroprusside (0.6 micrograms/min ml tissue). Acetylsalicylic acid (500 mg i.v.) given to block vascular prostacyclin production did not alter the response (n = 14). alpha-Adrenoceptor blockade by phentolamine (12 micrograms/min/100 ml tissue) did not prevent the increase in flow evoked by acetylcholine. In hypertensive patients, the decrease in forearm vascular resistance induced by acetylcholine but not evoked by sodium nitroprusside was reduced as compared with controls (14.5 +/- 3.1 and 6.1 +/- 1.6 units, respectively; n = 8; p less than 0.05). Thus, the vascular effects of acetylcholine in the human forearm circulation are independent of prostaglandins and adrenergic neurotransmission and therefore are most likely to be mediated by EDRF; the acetylcholine-induced release of EDRF is blunted in patients with essential hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference41 articles.

1. Shepherd JT Vanhoutte PM: The Human Cardiovascular System. New York Raven Press 1979

2. Mechanisms of interaction of peptide and nonpeptide vascular neurotransmitter systems;Burnstock G;J Cardiovasc Pharnmacol,1987

3. Vanhoutte PM Luscher TF: Peripheral mechanisms in cardiovascular regulation: Transmitters receptors and the endothelium in Tarazi RC Zanchetti A (eds): Handbook of Hypertension vol 8: Physiology and Pathophysiology ofHypertension -Regulatory Mechanisms. Amsterdam Elsevier 1986 pp 96-123

4. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine

5. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3