Affiliation:
1. Department of Molecular Biology, Genetech Inc., South San Francisco, Calif.
Abstract
After the description in the past 5 years of BNP and CNP, interest in the natriuretic peptide family has dramatically increased. Molecular characterization of the receptors for this hormone family has identified a heterogeneity in the receptor subtypes not previously alluded to by pharmacological or biochemical studies. Much has been published on the physiology of ANP, but the major roles for BNP and CNP remain to be elucidated. Some experiments indicate that ANP and BNP may act synergistically, especially during cardiac stress; however, the high level of structural diversity of BNP among species and the ability of porcine BNP, but not human BNP, to activate human NPR-B suggest that an as yet unidentified receptor may exist that specifically recognizes BNP. Localization studies have implied that CNP is the most prominent neuropeptide in the natriuretic peptide family, and the restriction of its receptor, NPR-B, to the nervous system suggests that CNP and NPR-B may act in the brain to coordinate the central aspects of body fluid homeostasis. Of the three known NPRs, two, NPR-A and NPR-B, are capable of synthesizing their own second messenger, cGMP. The domain within these receptors that has high homology to protein kinases has been demonstrated to be essential for regulating this activity. No kinase activity has been measured in these proteins, but it is possible that this region is important for ATP regulation of guanylyl cyclase activity. This possibility raises interesting parallels with receptor-mediated cAMP signaling within cells. Seven transmembrane receptors, once activated by ligand, associate with G proteins to affect the activity of adenylyl cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
385 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献