Molecular biology of the natriuretic peptides and their receptors.

Author:

Koller K J1,Goeddel D V1

Affiliation:

1. Department of Molecular Biology, Genetech Inc., South San Francisco, Calif.

Abstract

After the description in the past 5 years of BNP and CNP, interest in the natriuretic peptide family has dramatically increased. Molecular characterization of the receptors for this hormone family has identified a heterogeneity in the receptor subtypes not previously alluded to by pharmacological or biochemical studies. Much has been published on the physiology of ANP, but the major roles for BNP and CNP remain to be elucidated. Some experiments indicate that ANP and BNP may act synergistically, especially during cardiac stress; however, the high level of structural diversity of BNP among species and the ability of porcine BNP, but not human BNP, to activate human NPR-B suggest that an as yet unidentified receptor may exist that specifically recognizes BNP. Localization studies have implied that CNP is the most prominent neuropeptide in the natriuretic peptide family, and the restriction of its receptor, NPR-B, to the nervous system suggests that CNP and NPR-B may act in the brain to coordinate the central aspects of body fluid homeostasis. Of the three known NPRs, two, NPR-A and NPR-B, are capable of synthesizing their own second messenger, cGMP. The domain within these receptors that has high homology to protein kinases has been demonstrated to be essential for regulating this activity. No kinase activity has been measured in these proteins, but it is possible that this region is important for ATP regulation of guanylyl cyclase activity. This possibility raises interesting parallels with receptor-mediated cAMP signaling within cells. Seven transmembrane receptors, once activated by ligand, associate with G proteins to affect the activity of adenylyl cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 385 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3