Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current.

Author:

Lukas A1,Antzelevitch C1

Affiliation:

1. Masonic Medical Research Laboratory, Utica, NY 13501-1787.

Abstract

BACKGROUND Acute ischemia is known to produce more severe electrophysiological disturbances in canine ventricular epicardium than endocardium, although the mechanism for the differential sensitivity is still unresolved. Recent studies have demonstrated the presence of a prominent transient outward current (Ito) in ventricular epicardium but not endocardium. The present study was designed to test the hypothesis that the differential sensitivity of these two tissues to ischemia results, at least in part, from a more prominent Ito in epicardium than in endocardium. METHODS AND RESULTS Isolated canine ventricular epicardial and endocardial tissues and myocytes were studied by standard microelectrode techniques. Simulated ischemia (hyperkalemia, hypoxia, and acidosis) abolished the action potential plateau and caused a 50% to 60% shortening of action potential duration in epicardium but only a 10% to 20% shortening in endocardium. 4-Aminopyridine, an Ito inhibitor, restored the plateau in epicardium and reduced the dispersion of action potential duration between epicardium and endocardium. Stimulation protocols that minimized the contribution of Ito, such as acceleration of the stimulation rate or introduction of early premature beats, produced a paradoxical prolongation of the epicardial response caused by restoration of the action potential dome. Thus, ischemia-induced dispersion of repolarization was greatly diminished at rapid rates and after premature beats. Similar results were obtained in tissues and myocytes obtained from the same myocardial layers, suggesting that the differential sensitivities of epicardium and endocardium to ischemia are largely a result of inherent differences in cellular properties. CONCLUSIONS Our data suggest that the presence of a prominent Ito in epicardium but not endocardium contributes importantly to the selective electrical depression of epicardium by simulated ischemia. The repolarizing influence of Ito serves to amplify the ischemia-induced changes in inward (ICa and INa) and outward (calcium-activated) currents. By facilitating loss of the dome in epicardium, Ito contributes to the development of a marked dispersion of repolarization between normal and ischemic epicardium and between epicardium and endocardium, thereby providing the electrophysiological substrate for the genesis of reentrant arrhythmias.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 241 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3