Effective arterial elastance as index of arterial vascular load in humans.

Author:

Kelly R P1,Ting C T1,Yang T M1,Liu C P1,Maughan W L1,Chang M S1,Kass D A1

Affiliation:

1. Department of Internal Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205.

Abstract

BACKGROUND This study tested whether the simple ratio of ventricular end-systolic pressure to stroke volume, known as the effective arterial elastance (Ea), provides a valid measure of arterial load in humans with normal and aged hypertensive vasculatures. METHODS AND RESULTS Ventricular pressure-volume and invasive aortic pressure and flow were simultaneously determined in 10 subjects (four young normotensive and six older hypertensive). Measurements were obtained at rest, during mechanically reduced preload, and after pharmacological interventions. Two measures of arterial load were compared: One was derived from aortic input impedance and arterial compliance data using an algebraic expression based on a three-element Windkessel model of the arterial system [Ea(Z)], and the other was more simply measured as the ratio of ventricular end-systolic pressure to stroke volume [Ea(PV)]. Although derived from completely different data sources and despite the simplifying assumptions of Ea(PV), both Ea(Z) and Ea(PV) were virtually identical over a broad range of altered conditions: Ea(PV) = 0.97.Ea(Z) + 0.17; n = 33, r2 = 0.98, SEE = 0.09, p less than 0.0001. Whereas Ea(PV) also correlated with mean arterial resistance, it exceeded resistance by as much as 25% in older hypertensive subjects (because of reduced compliance and wave reflections), which better indexed the arterial load effects on the ventricle. Simple methods to estimate Ea (PV) from routine arterial pressures were tested and validated. CONCLUSIONS Ea(PV) provides a convenient, useful method to assess arterial load and its impact on the human ventricle. These results highlight effects of increased pulsatile load caused by aging or hypertension on the pressure-volume loop and indicate that this load and its effects on cardiac performance are often underestimated by mean arterial resistance but are better accounted for by Ea.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3