Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction.

Author:

Czernin J1,Porenta G1,Brunken R1,Krivokapich J1,Chen K1,Bennett R1,Hage A1,Fung C1,Tillisch J1,Phelps M E1

Affiliation:

1. Department of Radiological Sciences, UCLA School of Medicine 90024-1721.

Abstract

BACKGROUNDMetabolic imaging with positron emission tomography (PET) can detect tissue viability in clinical infarct regions. With appropriate tracer kinetic models and serial PET imaging, regional myocardial blood flow and rates of metabolism can now be quantified in patients with recent myocardial infarctions.METHODS AND RESULTSSerial PET imaging with [13N]ammonia, [11C]acetate, and 18F-deoxyglucose was performed in 22 patients with recent infarctions to measure regional blood flow (in milliliters per gram per minute), glucose metabolism (in micromoles per gram per minute), and oxidative metabolism (in clearance rate per minute). Hypoperfused clinical infarct regions were classified as "PET mismatch" if 18F was increased relative to 13N activity or "PET match" if 13N and 18F activities were reduced concordantly. Blood flows differed significantly between normal, mismatch, and match segments (0.83 +/- 0.20, 0.57 +/- 0.20, and 0.32 +/- 0.12 mL.g-1.min-1, respectively). The relation between oxidative metabolism and blood flow was piecewise linear and differed significantly between PET mismatch and PET match. Oxidative metabolism was less severely reduced than blood flow in mismatch regions but but reduced in proportion to blood flow in match regions. There was considerable overlap of blood flows between both types of PET segments.CONCLUSIONSQuantification of regional blood flow and substrate metabolism in postinfarction patients revealed alterations in the relation between substrate delivery and consumption demonstrated previously only in invasive animal experiments. The preserved oxidative metabolism in myocardium with PET mismatches may be ascribed to a regional increase in oxygen extraction. Such increase together with preserved glucose utilization may be the prerequisite for survival of ischemically injured myocardium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3