Effect of volume loading, pressure loading, and inotropic stimulation on left ventricular torsion in humans.

Author:

Hansen D E1,Daughters G T1,Alderman E L1,Ingels N B1,Stinson E B1,Miller D C1

Affiliation:

1. Division of Cardiology, Vanderbilt University School of Medicine, Nashville, Tenn 36232.

Abstract

BACKGROUND The transmural distribution of fiber angles and the extent of shortening among obliquely oriented fibers are likely to be major determinants of the twisting motion that accompanies left ventricular (LV) ejection. As such, measurements of torsion may provide useful information about LV contractile function, but other factors, such as ventricular loading conditions, may also regulate this motion. METHODS AND RESULTS Torsion angles (theta i) of midventricular and apical regions were measured relative to a reference minor axis near the base in seven human cardiac allografts from biplane radiographic images of metallic midwall markers. Pressure loading with methoxamine (5-10 muk/kg/min) increased LV end-systolic pressure by 41 +/- 14 mm Hg (p less than 0.0001). Volume loading with normal saline raised LV end-diastolic pressure from 9.9 +/- 5.2 to 19.6 +/- 4.9 mm Hg (p less than 0.0001). These alterations in LV loading conditions were associated with no change in theta i (difference not significant) for any marker site. Inotropic stimulation with dobutamine (5 micrograms/kg/min) increased values of theta i by as much as twofold (p less than 0.05); this response varied considerably depending on marker location, with the middle and apical inferior wall and the apical lateral wall being the most sensitive. When the marker site associated with the largest torsion angle (theta max) was considered in each patient, dobutamine increased theta max in all cases (25.2 +/- 10.5 degrees versus 15.8 +/- 7.7 degrees, p less than 0.001), whereas pressure and volume loading had negligible effects. This 59% increase in theta max was greater than that of conventional load-dependent indexes of LV systolic performance such as stroke volume (16%), ejection fraction (22%), and maximum rate of LV pressure rise (52%). CONCLUSIONS This component of LV motion is relatively insensitive to alterations in preload and afterload, while changes in contractile state influence LV torsion in a regionally heterogeneous manner. Quantification of LV torsion may, therefore, provide a sensitive and relatively load-independent measure of contractile performance that may prove to be useful in the serial assessment of LV function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference34 articles.

1. Streeter DD Jr: Gross morphology and fiber geometry of the heart in Berne RM (ed): Handbook of Physiology. The Cardiovascular System . Washington DC American Physiological Society 1979 pp 61-112

2. Some recent advances in cardiac pathology

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3