Dissociation between left ventricular untwisting and filling. Accentuation by catecholamines.

Author:

Rademakers F E1,Buchalter M B1,Rogers W J1,Zerhouni E A1,Weisfeldt M L1,Weiss J L1,Shapiro E P1

Affiliation:

1. Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Md.

Abstract

BACKGROUND Efficient early diastolic filling is essential for normal cardiac function. Diastolic suction, as evidenced by a decreasing left ventricular pressure during early filling, could result from restoring forces (the release of potential energy stored during systolic deformation) dependent on myofilament relaxation. Although these restoring forces have been envisioned within individual myofibers, recent studies suggest that gross fiber rearrangement involving the connective tissue network occurs easy in diastole. This may lead to the release of potential energy stored during systole and suction-aided filling. METHODS AND RESULTS To establish precisely the timing and extent of restoration of the systolic torsional deformation of the left ventricle with respect to early filling at baseline and with enhanced relaxation, we studied untwisting during control conditions and with catecholamine stimulation. Using noninvasive and nondestructive magnetic resonance tagging, torsional deformation of the left ventricle was measured at 20-msec intervals in 10 open-chest, atrially paced dogs, starting at aortic valve closure. Eight equiangular tags intersected the epicardium and endocardium in three short-axis imaging planes (base, mid, and apex). From the intersection points, epicardial and endocardial circumferential chord and arc lengths were measured and angular twist of mid and apical levels with respect to the base (maximal torsion and its reversal, untwisting) was calculated. Echo-Doppler provided timing of aortic valve closure and of mitral valve opening. Zero torsion was defined at end diastole. Torsion at the apical level reversed rapidly between its maximum and the time immediately after mitral valve opening: from 7.0 +/- 5.8 degrees to 3.2 +/- 5.4 degrees and 12.0 +/- 8.5 degrees to 6.9 +/- 7.8 degrees (mean +/- SD, both p less than 0.01) at the epicardium and endocardium, respectively. During the same period, no significant circumferential segment length changes occurred. As expected, after mitral valve opening, filling resulted in significant circumferential segment lengthening, whereas further reversal of torsion was small and nonsignificant. During dobutamine infusion, torsion at end systole was greater and reversal during isovolumic relaxation was much more rapid and greater in extent (p less than 0.01). Torsion reversed from 11.5 +/- 4.3 degrees to 5.7 +/- 4.8 degrees and 17.4 +/- 6.4 degrees to 6.9 +/- 7.7 degrees at epicardium and endocardium. CONCLUSIONS Untwisting occurs principally during isovolumic relaxation before filling and is markedly enhanced in speed and magnitude by catecholamines. This partial return of the left ventricle to its preejection configuration before mitral valve opening could represent an important mechanism for the release of potential energy stored in elastic elements during the systolic deformation. These myocardial restoring forces would be markedly enhanced by physiological changes consequent to catecholamines such as during exercise, offsetting the concomitant shortening of the filling period.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 307 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3