Adipocyte (Pro)Renin-Receptor Deficiency Induces Lipodystrophy, Liver Steatosis and Increases Blood Pressure in Male Mice

Author:

Wu Chia-Hua1,Mohammadmoradi Shayan1,Thompson Joel1,Su Wen1,Gong Ming1,Nguyen Genevieve1,Yiannikouris Frédérique1

Affiliation:

1. From the Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., F.Y.), Division of Endocrinology and Molecular Medicine (J.T.), and Department of Physiology (W.S., M.G.), University of Kentucky, Lexington; and Institut National de la Santè et de la Recherche Mèdicale (INSERM) U489 and Collège de France, Experimental Medicine Unit, Paris, France (G.N.).

Abstract

Adipose tissue dysfunction related to obesity is overwhelmingly associated with increased risk of developing cardiovascular diseases. In the setting of obesity, (pro)renin receptor (PRR) is increased in adipose tissue of mice. We sought to determine the physiological consequences of adipocyte-PRR deficiency using adiponectin-Cre mice. We report a unique model of adipocyte-PRR–deficient mice ( PRR Adi/Y ) with almost no detectable white adipose tissues. As a consequence, the livers of PRR Adi/Y mice were enlarged and demonstrated a marked accumulation of lipids. Adipocyte-specific deficiency of PRR increased systolic blood pressure and the concentration of soluble PRR in plasma. To determine whether adipocyte-PRR was involved in the development of obesity-induced hypertension, mice were fed a low-fat or a high-fat diet for 16 weeks. Adipocyte-PRR–deficient mice were resistant to diet-induced obesity. Both high-fat– and low-fat–fed PRR Adi/Y mice had elevated insulin levels. Interestingly, adipocyte-PRR deficiency improved glucose tolerance in high-fat–fed PRR Adi/Y mice. In response to feeding either low-fat or high-fat diets, systolic blood pressure was greater in PRR Adi/Y mice than in control mice. High-fat feeding elevated soluble PRR concentration in control and PRR Adi/Y mice. In vitro knockdown of PRR by siRNA significantly decreased mRNA abundance of PPARγ (peroxisome proliferator-activated receptor gamma), suggesting an important role for PRR in adipogenesis. Our data indicate that adipocyte-PRR is involved in lipid homeostasis and glucose and insulin homeostasis, and that soluble PRR may be a predictor of metabolic disturbances and play a role in systolic blood pressure regulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3