Dynamic relation between myocardial contractility and energy metabolism during and following brief coronary occlusion in the pig.

Author:

Schwartz G G1,Schaefer S1,Meyerhoff D J1,Gober J1,Fochler P1,Massie B1,Weiner M W1

Affiliation:

1. Magnetic Resonance Unit, Veterans Administration Medical Center, San Francisco, Calif 94121.

Abstract

Changes in high-energy phosphate metabolism may be important in the regulation of myocardial contractile function during ischemia. This study sought to determine the dynamic relation between myocardial contractile function and high-energy phosphate metabolism during and following brief (24-second) coronary occlusion, when large and rapid changes in both parameters occur. Eight anesthetized, open-chest pigs were instrumented with a Doppler flow probe and occluder on the anterior descending coronary artery, segment length crystals in the anterior left ventricular wall, and a surface coil for phosphorus-31 nuclear magnetic resonance spectroscopy. Phosphorus-31 spectra were reconstructed with a 4.8-second time resolution by summing corresponding short blocks of data from multiple occlusions. Metabolic and functional parameters were unchanged during the first 4.8 seconds of occlusion. During the remainder of occlusion, phosphocreatine progressively declined to 66 +/- 3% of control, inorganic phosphate rose to 170 +/- 8% of control, and segment shortening fell to 25 +/- 9% of control. A strong linear correlation was found between dynamic changes in segment shortening and phosphocreatine (r2 = 0.97), inorganic phosphate (r2 = 0.96), and the ratio of phosphocreatine to inorganic phosphate (r2 = 0.98) during occlusion. At any level of the ratio between phosphocreatine and inorganic phosphate, segment shortening was greater during reflow than during occlusion. The close, dynamic relation between segment shortening and phosphorus metabolites supports the regulation of contractility by changes in energy metabolism or its by-products during ischemia. During reactive hyperemia, the high coronary flow rate may be an independent factor modulating contractility.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3