Analysis of the characteristics of the flow velocity waveforms in left atrial small arteries and veins in the dog.

Author:

Kajiya F1,Tsujioka K1,Ogasawara Y1,Hiramatsu O1,Wada Y1,Goto M1,Yanaka M1

Affiliation:

1. Department of Medical Engineering and Systems Cardiology, Kawasaki Medical School, Kurashiki, Japan.

Abstract

To clarify the characteristics of the phasic blood velocity pattern in small arteries and veins on the left atrial surface, we used our newly developed fiber-optic laser Doppler velocimeter. We intended particularly to examine the influence of atrial contraction and relaxation on velocity waveforms to obtain some insight into the nature of the mechanical force acting on the atrial intramyocardial vascular beds. In 14 anesthetized open-chest dogs, the left atrial appendage was gently displaced to expose small branches of the artery and vein. Vessels with an outer diameter of about 150-500 microns were chosen for the measurements because their walls are transparent to laser light. The fiber tip (velocity sensor) was fixed on the vessel surface with a drop of cyanoacrylate when good-quality Doppler signals were consistently observed. Additional experiments with three dogs were performed to observe the blood velocities in the atrial artery and vein during arrhythmia. The blood velocity waveform in the artery was similar to the pattern of aortic pressure during ventricular ejection (peak velocity, 18.8 +/- 7.8 cm/sec) but was characterized by a pronounced dip during atrial contraction. The temporal coincidence between the dip formation and atrial contraction was confirmed during atrial flutter with an atrioventricular block. After isoproterenol administration (2 micrograms i.v.), the acceleration rate of the forward flow velocity increased by 176% (p less than 0.05), and reverse flow appeared during atrial contraction in five cases out of eight (p = 0.013). The blood flow velocity in atrial small veins, on the other hand, was predominant during atrial contraction (peak velocity, 15.6 +/- 5.8 cm/sec). Isoproterenol increased the acceleration rate of this forward flow velocity by 121% (p less than 0.01). Nitroglycerin did not change the blood velocity waveform significantly in atrial arteries or in veins. The phase opposition between arterial inflow into and venous outflow from the atrial myocardium indicates that a large portion of the coronary inflow to the atrial myocardium may be stored due to the presence of atrial myocardial vascular capacitance. We conclude that atrial myocardial contraction impedes atrial inflow and promotes venous outflow from atrial capacitance vessels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3