Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells.

Author:

Gleason M M1,Medow M S1,Tulenko T N1

Affiliation:

1. Department of Physiology and Biochemistry, Medical College of Pennsylvania, Philadelphia 19129.

Abstract

The relations between membrane cholesterol content, basal (unstimulated) transmembrane 45Ca2+ movements, cytosolic calcium levels, and membrane fluidity were investigated in cultured rabbit aortic smooth muscle cells (SMCs) and isolated SMC plasma membrane microsomes. SMCs were enriched with unesterified (free) cholesterol (FC) for 18-24 hours with medium containing human low density lipoprotein and FC-rich phospholipid (PL) liposomes. This procedure increased cholesterol mass without affecting PL mass, resulting in an increase in the FC/PL molar ratio compared with controls in cells (67% FC increase, p less than 0.001; 43% FC/PL ratio increase, p less than 0.01) and in SMC microsomes (52% FC increase, p less than 0.05; 43% FC/PL ratio increase, p less than 0.05). Cholesterol enrichment also increased unstimulated 45Ca2+ influx (p less than 0.001) and efflux (p less than 0.05). Cellular cholesterol content correlated in a linear fashion with these changes (influx: r = 0.722, p less than 0.01; efflux: r = 0.951, p less than 0.05). In addition, cytosolic calcium levels increased approximately 34% (p less than 0.01) with cholesterol enrichment. The cholesterol-induced increase in 45Ca2+ influx was reversible with time and demonstrated sensitivity to the channel blockers. Fluorescence anisotropy measured from 5 degrees C to 40 degrees C using the fluorophore diphenylhexatriene showed decreased membrane fluidity in microsomal membranes obtained from cholesterol-enriched SMCs compared with controls (p less than 0.02). These results suggest that the SMC plasma membrane is very sensitive to cholesterol enrichment with liposomes or human low density lipoprotein and that increases in membrane cholesterol content increase cytosolic calcium levels in SMCs, are associated with a decrease in membrane fluidity, and unmask a new, or otherwise silent, dihydropyridine-sensitive calcium channel that may be involved in altered arterial wall properties with serum hypercholesterolemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3