Increased cyclic AMP content accelerates protein synthesis in rat heart.

Author:

Xenophontos X P1,Watson P A1,Chua B H1,Haneda T1,Morgan H E1

Affiliation:

1. Department of Physiology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey.

Abstract

Elevation of cyclic AMP (cAMP) content in perfused rat hearts by exposure to glucagon, forskolin, and 1-methyl-3-isobutylxanthine (IBMX) increased rates of protein synthesis during the second hour of perfusion with buffer that contained glucose in the absence of added insulin. When tetrodotoxin was added to arrest contractile activity, glucagon, forskolin, and IBMX still elevated cAMP content and rates of protein synthesis. Perfusion of beating rat hearts at elevated aortic pressure (120 mm Hg vs. 60 mm Hg) also accelerated rates of protein synthesis and raised cAMP content and cAMP-dependent protein kinase activity during the second hour of perfusion. Insulin accelerated rates of protein synthesis in beating hearts during the first and second hour of perfusion but did not increase cAMP content. Elevation of aortic pressure in insulin-treated hearts raised cAMP content but had no further effect on rates of protein synthesis. Perfusion of arrested hearts for as little as 2 minutes at 120 mm Hg resulted in a rapid and sustained increase in cAMP content, cAMP-dependent protein kinase activity, and rate of protein synthesis after 60-120 minutes of additional perfusion at 60 mm Hg. Exposure of arrested hearts to 0.2 mM methacholine, a muscarinic-cholinergic agonist, for 5 minutes before elevation of perfusion pressure blocked the pressure-induced increases in cAMP content, cAMP-dependent protein kinase activity, and rates of protein synthesis. When hearts were removed from pertussis toxin-treated animals, methacholine did not block the effects of forskolin on these same three parameters. These studies indicated that elevation of tissue cAMP by hormone binding, direct activation of adenylate cyclase, or inhibition of phosphodiesterase resulted in acceleration of protein synthesis. Furthermore, the effects of increased aortic pressure to accelerate synthesis appeared to involve a cAMP-dependent mechanism that was independent of changes in contractile activity but could be blocked with a muscarinic-cholinergic agonist. Acceleration of protein synthesis by insulin was not associated with an elevation of cAMP.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference41 articles.

1. Role of cyclic nucleotides in heart metabolism

2. Kallfeldt BJ Hjalmarson AC Isaksson OG: In vitro effects of catecholamines on protein synthesis in perfused rat heart. JMol Cell Cardiol 1976;8:787-802

3. Morgan HE Chua BHL Watson PA Russo L: Protein synthesis and degradation in Fozzard HA Haber E Jennings RB Katz AM Morgan HE (eds): The Heart and Cardiovascular System. New York Raven Press 1986 vol 2 pp 931-948

4. Mallov S: Effect of sympathomimetic drugs on protein synthesis in rat heart. / Pharmacol Exp Ther 1973; 187:482-494

5. Amino acid incorporation into myocardium: Effects of insulin, glucagon, and dibutyryl 3',5'-AMP;Hait G;Am J Physiol,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3