Calcium current in single cells isolated from normal and hypertrophied rat heart. Effects of beta-adrenergic stimulation.

Author:

Scamps F1,Mayoux E1,Charlemagne D1,Vassort G1

Affiliation:

1. Laboratoire de Physiologie Cellulaire Cardiaque, INSERM U-241, Université Paris-Sud, Orsay, France.

Abstract

The L-type calcium current was investigated in normal and hypertrophied rat ventricular myocytes as a possible cause of the action potential lengthening that has been reported during hypertrophy. Regulation of the calcium current (ICa) by a beta-adrenergic agonist (isoproterenol) was also analyzed since beta-agonist-induced positive inotropy is less marked in hypertrophied heart. Left ventricular hypertrophy was induced by stenosis of the abdominal aorta. For recording ICa, the whole-cell patch-clamp technique was used. Potassium currents were suppressed by replacing K+ ions with Cs+ ions in both the extracellular and intracellular media, and sodium current was blocked by 50 microM tetrodotoxin. The Ca2+ current was larger in hypertrophied cells (2.2 +/- 0.6 nA [n= 31]) than in normal cells (1.2 +/- 0.5 nA [n = 33]). However, if one relates ICa amplitude to the cell membrane area, as estimated by membrane capacitance measurement, no significant difference was observed in current density (8.5 +/- 2.5 pA/pF [n = 31] and 8.3 +/- 2.1 pA/pF [n = 33] in hypertrophied and in normal cells, respectively). In both cell types, ICa displayed the same voltage and time dependence. When expressed as a percentage, the maximal increase in ICa amplitude that was obtained with 100 nM isoproterenol was less in hypertrophied cells (+78%) than in normal cells (+120%). The sensitivity of ICa to beta-adrenergic stimulation was not modified: EC50 was 3.8 nM for hypertrophied cells and 4.8 nM for normal cells. Forskolin and cyclic AMP were as effective in both cell types. Stimulation of ICa by beta-adrenergic agonist was decreased in agreement with a reduced number of binding sites of beta-agonists and/or an altered coupling of the G-proteins.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3