Affiliation:
1. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
Abstract
The inverse problem in electrocardiography implies the reconstruction of electrical events within the heart from information measured noninvasively on the body surface. Deduction of these electrical events is possible from measured epicardial potentials, and, thus, a noninvasive method of recovering epicardial potentials from body surface data is useful in experimental and clinical studies. In the present study, an inverse method that uses Tikhonov regularization was shown to reconstruct, with good accuracy, important events in cardiac excitation. The inverse procedure was employed on data obtained from a human-torso tank in which a beating canine heart was placed in the correct anatomical position. Comparison with the actual, measured epicardial potentials indicates that positions and shapes of potential features (maxima, minima, zero potential line, saddles, etc.) are recovered with good accuracy throughout the QRS. An error in position of up to 1 cm is typical, while amplitudes are slightly diminished. In addition, application was extended from the above setting, in which the geometry was precisely known and potentials at a large number of leads were measured accurately, to a situation that is more representative of clinical and experimental settings. Effects of inaccuracy in location of the position of the heart were examined. A stylized torso that approximates the actual geometry was designed, and its performance in the inverse computations was evaluated. A systematic method of reduction of the number of leads on the body surface was proposed, and the resulting lead configurations were evaluated in terms of the accuracy of inverse solutions. The results indicate that the inverse problem can be stabilized with respect to different types of uncertainties in measured data and offer promise in the use of the inverse procedure in clinical and experimental situations.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献