Affiliation:
1. From the American Heart Association–Bugher Foundation Center for Molecular Biology of the Cardiovascular System, Stanford University School of Medicine, Stanford, Calif.
Abstract
AbstractThe use of genetic models has greatly assisted investigations of the natural history, mechanisms, and potential therapy for human vascular disease. In the past, genetic models of vascular disease were obtained through serendipity and/or selective breeding to obtain inbred lines that express the phenotype of interest. This approach has yielded several valuable models of atherosclerosis and hypertension. In the past several years, the advent of molecular techniques has enabled investigators to produce additional novel genetic models of disease that have further enhanced the study of vascular biology and medicine. Transgenic techniques and the techniques of homologous recombination have allowed researchers to alter the genotype of an animal in a precise manner and to study the resultant change in phenotype. More recently, techniques of in vivo gene transfer have also accelerated and enhanced the development of novel models. The application of these methodologies has resulted in important breakthroughs in our understanding of the pathogenesis and treatment of vascular diseases. In this review, we compare and contrast these technologies along with examples of their use in the studies of vascular biology and medicine.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献