Doppler Tissue Imaging Quantitates Regional Wall Motion During Myocardial Ischemia and Reperfusion

Author:

Derumeaux Geneviève1,Ovize Michel1,Loufoua Joseph1,André-Fouet Xavier1,Minaire Yves1,Cribier Alain1,Letac Brice1

Affiliation:

1. From the Départment de Cardiologie, Hôpital Charles Nicolle, Centre Hospitalier Universitaire de Rouen, and Laboratoire de Physiologie Lyon-Nord et Service de Cardiologie D, Université Claude Bernard (M.O., J.L., X.A.-F., Y.M.), Lyon, France.

Abstract

Background —Quantification of regional myocardial function is a major unresolved issue in cardiology. We evaluated the accuracy of pulsed Doppler tissue imaging (DTI), a new echocardiographic technique, to quantify regional myocardial dysfunction induced by acute ischemia and reperfusion. Methods and Results —In nine open-chest anesthetized pigs, various degrees of regional wall motion abnormalities were induced by graded reduction of left anterior descending coronary artery (LAD) blood flow. Pulsed Doppler tissue imaging was performed from an epicardial apical four-chamber view with the sample placed within the middle part of the septal wall. Peak septal velocities were calculated during systole, isovolumic relaxation, and early and late diastole. Regional myocardial blood flow and systolic and diastolic dysfunctions were assessed by radioactive microspheres and ultrasonic crystals, respectively. Ischemia resulted in a significant rapid reduction of systolic velocities and an early decrease in the ratio of early to late diastolic velocities. Both changes were detected by pulsed DTI within 5 seconds of coronary artery occlusion. The decrease in systolic velocity significantly correlated with both systolic shortening ( r =.90, P <.0001) and regional myocardial blood flow ( r =.96, P <.0001) during reduction of LAD blood flow. Conclusions —These results suggest that DTI may be a promising new tool for the quantification of ischemia-induced regional myocardial dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 265 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3