Inhibition of p38 Mitogen-Activated Protein Kinase Decreases Cardiomyocyte Apoptosis and Improves Cardiac Function After Myocardial Ischemia and Reperfusion

Author:

Ma Xin L.1,Kumar Sanjay1,Gao Feng1,Louden Calvert S.1,Lopez Bernard L.1,Christopher Theodore A.1,Wang Chuanlin1,Lee John C.1,Feuerstein Giora Z.1,Yue Tian-Li1

Affiliation:

1. From the Division of Emergency Medicine (X.L.M., F.G., B.L.L., T.A.C.), Thomas Jefferson University, Philadelphia, and the Departments of Bone and Cartilage (S.K., J.C.L.), Experimental Toxicology (C.S.L.), and Cardiovascular Pharmacology (C.W., G.Z.F., T.-L.Y.), SmithKline Beecham Pharmaceuticals, King of Prussia, Pa.

Abstract

Background —Activation of p38 mitogen-activated protein kinase (MAPK) plays an important role in apoptotic cell death. The role of p38 MAPK in myocardial injury caused by ischemia/reperfusion, an extreme stress to the heart, is unknown. Methods and Results —Studies were performed with isolated, Langendorff-perfused rabbit hearts. Ischemia alone caused a moderate but transient increase in p38 MAPK activity (3.5-fold increase, P <0.05 versus basal). Ischemia followed by reperfusion further activated p38 MAPK, and the maximal level of activation (6.3-fold, P <0.01) was reached 10 minutes after reperfusion. Administration of SB 203580, a p38 MAPK inhibitor, decreased myocardial apoptosis (14.7±3.2% versus 30.6±3.5% in vehicle, P <0.01) and improved postischemic cardiac function. The cardioprotective effects of SB 203580 were closely related to its inhibition of p38 MAPK. Administering SB 203580 before ischemia and during reperfusion completely inhibited p38 MAPK activation and exerted the most cardioprotective effects. In contrast, administering SB 203580 10 minutes after reperfusion (a time point when maximal MAPK activation had already been achieved) failed to convey significant cardioprotection. Moreover, inhibition of p38 MAPK attenuated myocardial necrosis after a prolonged reperfusion. Conclusions —These results demonstrate that p38 MAPK plays a pivotal role in the signal transduction pathway mediating postischemic myocardial apoptosis and that inhibiting p38 MAPK may attenuate reperfusion injury.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3