Three-Dimensional Electrophysiological Imaging of the Intact Canine Left Ventricle Using a Noncontact Multielectrode Cavitary Probe: Study of Sinus, Paced, and Spontaneous Premature Beats

Author:

Khoury Dirar S.1,Berrier Keith L.1,Badruddin Shamim M.1,Zoghbi William A.1

Affiliation:

1. From the Center for Experimental Cardiac Electrophysiology, Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Tex.

Abstract

Background —The feasibility of measuring cavitary electrograms using a noncontact probe and reconstructing endocardial surface electrograms and activation sequences during paced beats was previously demonstrated in the isolated canine left ventricle (LV). The objective of the present study was to develop and test a high-resolution, three-dimensional, endocardial electrophysiological imaging technique that simultaneously reconstructs endocardial surface electrograms and their corresponding activation sequences during normal and abnormal beats with the use of cavitary electrograms measured with a noncontact multielectrode probe in the intact canine LV. Methods and Results —A 128-electrode probe was inserted into the intact canine LV. Probe unipolar electrograms were simultaneously acquired during sinus, artificially paced, and spontaneous premature beats. Representative endocardial electrograms were measured directly using eight needle electrodes (the “gold standard”). A probe-cavity realistic, three-dimensional geometric model was constructed using two-dimensional epicardial echocardiography. Boundary element methods and numeric regularization were used to compute electrograms at 194 sites on the endocardium. In eight pacing protocols, computed endocardial electrograms correlated well with directly measured electrograms ( r =.88). Corresponding activation times were also in agreement with those determined from measured endocardial electrograms (activation error, 4.7 ms). The earliest region of activation was invariably in the vicinity of the pacing needle (spatial error, 9.2 mm). Subsequently, the site of origin of ischemia-induced spontaneous ventricular premature beats and the ensuing sequence of depolarization was identified. Conclusions —Noncontact mapping provides realistic, three-dimensional electrophysiological images of the endocardium, on a beat-by-beat basis, that localize the sites of origin of premature beats and reconstruct their activation sequences.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference35 articles.

1. Preliminary Report: Effect of Encainide and Flecainide on Mortality in a Randomized Trial of Arrhythmia Suppression after Myocardial Infarction

2. Radiofrequency catheter ablation for management of symptomatic ventricular ectopic activity

3. Wit AL Janse MJ. The Ventricular Arrhythmias of Ischemia and Infarction. Electrophysiological Mechanisms . Mount Kisco NY: Futura Publishing; 1993:441–453.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3