Affiliation:
1. From the Welch Center for Prevention, Epidemiology and Clinical Research, Department of Medicine (E.R.M., L.J.A.), The Johns Hopkins Medical Institutions, and the Department of Epidemiology (L.J.A.) and Department of Environmental Health Sciences (L.J., T.H.R.), Johns Hopkins School of Hygiene and Public Health, Baltimore, Md.
Abstract
Background
Cigarette smoke may promote atherogenesis by producing oxygen-derived free radicals that damage lipids. However, evidence in support of this hypothesis is inconsistent because most studies did not control for aspects of diet (antioxidants and lipid substrate) that may confound the association between smoking and measures of lipid peroxidation.
Methods and Results
The relationships between cigarette smoking and two measures of lipid peroxidation, breath ethane (an in vivo assay) and thiobarbituric acid–reactive substances (TBARS, an in vitro assay), were examined in 123 adults (11% of whom were smokers) participating in a controlled feeding study. After 3 weeks of controlled feeding on a common diet (36% total fat, 14% saturated fats, 6% polyunsaturated fats, and 12% monounsaturated fats), breath and fasting serum samples were collected for measurement of ethane and TBARS, respectively. Baseline characteristics of smokers and nonsmokers were similar, including several indices related to diet and nutritional status (albumin, cholesterol, body mass index, and oxygen radical–absorbing capacity). Cigarette smokers had significantly higher breath ethane (8.88 versus 1.71 pmol/L;
P
<.0001) and TBARS (24.0 versus 20.7 μmol/mL;
P
=.008) than nonsmokers. The interval between breath collection and the time the last cigarette was smoked was significantly and inversely correlated with breath ethane. Neither measure of lipid peroxidation was associated with measures of serum cholesterol or albumin, body mass index, or serum oxygen radical–absorbing capacity.
Conclusions
Cigarette smokers have higher rates of in vivo and in vitro lipid peroxidation. These results support the hypothesis that the atherogenic effects of smoking are mediated in part by free radical damage to lipids.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献