Cellular and Ionic Basis for T-Wave Alternans Under Long-QT Conditions

Author:

Shimizu Wataru1,Antzelevitch Charles1

Affiliation:

1. From Masonic Medical Research Laboratory, Utica, NY.

Abstract

Background —T-wave alternans (TWA), an ECG phenomenon characterized by beat-to-beat alternation of the morphology, amplitude, and/or polarity of the T wave, is commonly observed in the acquired and congenital long-QT syndromes (LQTS). This study examines the cellular and ionic basis for TWA induced by rapid pacing under conditions mimicking the LQT3 form of the congenital LQTS in an arterially perfused canine left ventricular wedge preparation. Methods and Results —Transmembrane action potentials from epicardial, M, and endocardial cells and 6 to 8 intramural unipolar electrograms were simultaneously recorded together with a transmural ECG and isometric tension development. In the presence of sea anemone toxin (ATX-II; 20 nmol/L), an increase in pacing rate (from a cycle length [CL] of 500 to 400 to 250 ms) produced a wide spectrum of T-wave and mechanical alternans. Acceleration to CLs of 400 to 300 ms produced mild to moderate TWA principally due to beat-to-beat alternation of repolarization of cells in the M region. Transmural dispersion of repolarization during alternans was exaggerated during alternate beats. Acceleration to CLs of 300 to 250 ms caused more pronounced beat-to-beat alternation of action potential duration (APD) of the M cell, resulting in a reversal of repolarization sequence across the ventricular wall, leading to alternation in the polarity of the T wave. The peak of the negative T waves coincided with repolarization of the M region, whereas the end of the negative T wave coincided with the repolarization of epicardium. In almost all cases, electrical alternans was concordant with mechanical alternans. Torsade de pointes occurred after an abrupt acceleration of CL, which was associated with marked TWA. Both ryanodine and low [Ca 2+ ] o completely suppressed alternans of the T wave, APD, and contraction, suggesting a critical role for intracellular Ca 2+ cycling in the maintenance of TWA. Conclusions —Our results suggest that TWA observed at rapid rates under long-QT conditions is largely the result of alternation of the M-cell APD, leading to exaggeration of transmural dispersion of repolarization during alternate beats, and thus the potential for development of torsade de pointes. Our data also suggest that unlike transient forms of TWA that damp out quickly and depend on electrical restitution factors, the steady-state electrical and mechanical alternans demonstrated in this study appears to be largely the result of beat-to-beat alternans of [Ca 2+ ] i .

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3