Recombinant Vascular Endothelial Growth Factor Secreted From Tissue-Engineered Bioartificial Muscles Promotes Localized Angiogenesis

Author:

Lu Yongxin1,Shansky Janet1,Del Tatto Michael1,Ferland Paulette1,Wang Xiaoyun1,Vandenburgh Herman1

Affiliation:

1. From the Department of Pathology, Brown University School of Medicine, and The Miriam Hospital (Y.L., J.S., M.D., P.F., X.W., H.V.); and Cell Based Delivery, Inc (J.S., M.D., P.F., H.V.), Providence, RI.

Abstract

Background Therapeutic angiogenesis by the administration of recombinant vascular endothelial growth factor (rVEGF) is a novel strategy for the treatment of ischemic disorders. rVEGF has been delivered as a protein, by plasmid DNA, and by genetically engineered cells with different pharmacokinetic and physiological properties. In the present study, we examined a new method for delivery of rVEGF using implantable bioartificial muscle (BAM) tissues made from genetically modified primary skeletal myoblasts. Our goal was to determine whether the rVEGF delivered by this technique promoted controlled angiogenesis in nonischemic and/or ischemic adult mouse tissue. Methods and Results Primary adult mouse myoblasts were retrovirally transduced to secrete human or mouse rVEGF and tissue-engineered into implantable 1×10 to 15-mm BAMs containing parallel arrays of postmitotic myofibers. In vitro, they secreted 290 to 511 ng of bioactive mouse or human VEGF/BAM per day. rVEGF BAMs implanted subcutaneously into syngeneic mice caused a 30-fold increase in the number of CD31-positive capillary cells within the BAM by 1 week compared with control BAMs. Implantation of rVEGF-secreting BAMs into ischemic hindlimbs resulted in a 2- to 3-fold increase in capillary density of neighboring host muscle by 1 week and out to 4 weeks with no evidence of hemangioma formation. Conclusions Local delivery of rVEGF from BAMs rapidly increases capillary density both within the BAM itself and in adjacent ischemic muscle tissue. Genetically engineered muscle tissue provides a method for therapeutic protein delivery in a dose-regulated fashion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3