Stretch Enhances Contraction of Bovine Coronary Arteries via an NAD(P)H Oxidase–Mediated Activation of the Extracellular Signal–Regulated Kinase Mitogen-Activated Protein Kinase Cascade

Author:

Oeckler Richard A.1,Kaminski Pawel M.1,Wolin Michael S.1

Affiliation:

1. From the Department of Physiology, New York Medical College, Valhalla, NY.

Abstract

This study examines the effects of an increase in passive stretch in endothelium-removed bovine coronary artery on oxidant-induced changes in force generation. Increasing passive stretch on the arterial segments from 5 to 20 g for 20 minutes caused a subsequent increase ( P <0.05) in force generation to 30 mmol/L KCl or 0.1 μmol/L serotonin compared with the prestretch control response. Also associated with the passive stretch were increases in superoxide detection by lucigenin and a selective increase in extracellular signal–regulated kinase (ERK) mitogen-activated protein (MAP) kinase phosphorylation measured by Western analysis. The stretch-induced increase in force generation was eliminated by inhibition of the ERK pathway by the MEK inhibitor PD98059 but not by inhibitors of the p38 MAP kinase pathway (SB202190) or c-Jun N-terminal protein kinase pathway (SP200169). Additionally, stretch-induced increases in both ERK phosphorylation and force generation were attenuated by inhibition of tyrosine kinases (genistein), src (PP2), and specific sites on the epidermal growth factor receptor (EGFR) (AG1478). Probes for oxidant signaling, including NAD(P)H oxidase inhibitors (diphenyliodonium and apocynin) or enhancement of peroxide consumption (ebselen) but not inhibition of xanthine oxidase (allopurinol), attenuated the effects of stretch on both ERK phosphorylation and force generation. Furthermore, stretch caused an increase in EGFR phosphorylation and cytosolic to membrane translocation of the p47phox NAD(P)H oxidase subunit. Hydrogen peroxide also elicited contraction through EGFR phosphorylation and ERK. In summary, stretch seems to enhance force generation via ERK signaling through an EGFR/src-dependent mechanism activated by peroxide derived from a stretch-mediated activation of the NAD(P)H oxidase, a response that may contribute to hypertensive alterations in vascular reactivity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3