Human Mesenchymal Stem Cells as a Gene Delivery System to Create Cardiac Pacemakers

Author:

Potapova Irina1,Plotnikov Alexei1,Lu Zhongju1,Danilo Peter1,Valiunas Virginijus1,Qu Jihong1,Doronin Sergey1,Zuckerman Joan1,Shlapakova Iryna N.1,Gao Junyuan1,Pan Zongming1,Herron Alan J.1,Robinson Richard B.1,Brink Peter R.1,Rosen Michael R.1,Cohen Ira S.1

Affiliation:

1. From the Institute of Molecular Cardiology, Departments of Physiology and Biophysics (I.P., Z.L., V.V., S.D., J.Z., J.G., Z.P., P.R.B., I.S.C.), SUNY Stony Brook, Stony Brook, NY; Center for Molecular Therapeutics, Department of Pharmacology (A.P., P.D., J.Q., I.N.S., R.B.R., M.R.R.), Department of Pediatrics (M.R.R.), and the Institute of Comparative Medicine and Department of Pathology (A.J.H.), Columbia University, New York, NY.

Abstract

We tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs + -sensitive current (31.1±3.8 pA/pF at −150 mV) activating in the diastolic potential range with reversal potential of −37.5±1.0 mV, confirming the expressed current as I f -like. The expressed current responded to isoproterenol with an 11-mV positive shift in activation. Acetylcholine had no direct effect, but in the presence of isoproterenol, shifted activation 15 mV negative. Transfected hMSCs influenced beating rate in vitro when plated onto a localized region of a coverslip and overlaid with neonatal rat ventricular myocytes. The coculture beating rate was 93±16 bpm when hMSCs were transfected with control plasmid (expressing only EGFP) and 161±4 bpm when hMSCs were expressing both EGFP+mHCN2 ( P <0.05). We next injected 10 6 hMSCs transfected with either control plasmid or mHCN2 gene construct subepicardially in the canine left ventricular wall in situ. During sinus arrest, all control (EGFP) hearts had spontaneous rhythms (45±1 bpm, 2 of right-sided origin and 2 of left). In the EGFP+mHCN2 group, 5 of 6 animals developed spontaneous rhythms of left-sided origin (rate=61±5 bpm; P <0.05). Moreover, immunostaining of the injected regions demonstrated the presence of hMSCs forming gap junctions with adjacent myocytes. These findings demonstrate that genetically modified hMSCs can express functional HCN2 channels in vitro and in vivo, mimicking overexpression of HCN2 genes in cardiac myocytes, and represent a novel delivery system for pacemaker genes into the heart or other electrical syncytia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference23 articles.

Cited by 252 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3