Targeted Proteolysis Sustains Calcineurin Activation

Author:

Burkard Natalie1,Becher Jan1,Heindl Cornelia1,Neyses Ludwig1,Schuh Kai1,Ritter Oliver1

Affiliation:

1. From the Department of Medicine (N.B., J.B., C.H., O.R.) and Institute of Clinical Biochemistry and Pathobiochemistry (K.S.), University of Wuerzburg, Wuerzburg, Germany, and University Department of Medicine, Manchester Royal Infirmary, Manchester, UK (L.N.).

Abstract

Background— Calcineurin (CnA) is important in the regulation of myocardial hypertrophy. We demonstrated that targeted proteolysis of the CnA autoinhibitory domain under pathological myocardial workload leads to increased CnA activity in human myocardium. Here, we investigated the proteolytic mechanism leading to activation of CnA. Methods and Results— In patients with diseased myocardium, we found strong nuclear translocation of CnA. In contrast, in normal human myocardium, there was a cytosolic distribution of CnA. Stimulation of rat cardiomyocytes with angiotensin (Ang) II increased calpain activity significantly (433±11%; P <0.01; n=6) and caused proteolysis of the autoinhibitory domain of CnA. Inhibition of calpain by a membrane-permeable calpain inhibitor prevented proteolysis. We identified the cleavage site of calpain in the human CnA sequence at amino acid 424. CnA activity was increased after Ang II stimulation (310±29%; P <0.01; n=6) and remained high after removal of Ang II (214±17%; P <0.01; n=6). Addition of a calpain inhibitor to the medium decreased CnA activity (110±19%; P =NS; n=6) after removal of Ang II. Ang II stimulation of cardiomyocytes also translocated CnA into the nucleus as demonstrated by immunohistochemical staining and transfection assays with GFP-tagged CnA. Calpain inhibition and therefore suppression of calpain-mediated proteolysis of CnA enabled CnA exit from the nucleus. Conclusions— Ang II stimulation of cardiomyocytes increased calpain activity, leading to proteolysis of the autoinhibitory domain of CnA. This causes an increase in CnA activity and results in nuclear translocation of CnA. Loss of the autoinhibitory domain renders CnA constitutively nuclear and active, even after removal of the hypertrophic stimulus.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3