Identification of Genes Potentially Involved in Rupture of Human Atherosclerotic Plaques

Author:

Faber Birgit C.G.1,Cleutjens Kitty B.J.M.1,Niessen Ron L.J.1,Aarts Petra L.J.W.1,Boon Wendy1,Greenberg Andrew S.1,Kitslaar Peter J.E.H.M.1,Tordoir Jan H.M.1,Daemen Mat J.A.P.1

Affiliation:

1. From the Departments of Pathology (B.C.G.F., K.B.J.M.C., R.L.J.N., P.L.J.W.A., W.B., M.J.A.P.D.) and General Surgery (P.J.E.H.M.K., J.H.M.T.), Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, the Netherlands, and the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University (A.S.G.), Boston, Mass.

Abstract

Abstract— Although rupture of an atherosclerotic plaque is the major cause of acute vascular occlusion, the exact molecular mechanisms underlying this process are still poorly understood. In this study, we used suppression subtractive hybridization to make an inventory of genes that are differentially expressed in whole-mount human stable and ruptured plaques. Two libraries were generated, one containing 3000 clones upregulated and one containing 2000 clones downregulated in ruptured plaques. Macroarray analysis of 500 randomly chosen clones showed differential expression of 45 clones. Among the 25 clones that showed at least a 2-fold difference in expression was the gene of perilipin, upregulated in ruptured plaques, and the genes coding for fibronectin and immunoglobulin λ chain, which were downregulated in ruptured plaques. Reverse transcriptase–polymerase chain reaction analysis on 10 individual ruptured and 10 individual stable plaques showed a striking consistency of expression for the clones SSH6, present in 8 ruptured and 2 stable plaques, and perilipin, expressed in 8 ruptured plaques and completely absent in stable plaques. Localization studies of both perilipin mRNA and protein revealed expression in cells surrounding the cholesterol clefts and in foam cells of ruptured atherosclerotic plaques. No expression was observed in nondiseased artery, and only a few cells in the shoulder region of stable plaques tested positive for perilipin. In conclusion, this study shows that it is possible to identify genes that are differentially expressed in whole-mount stable or ruptured atherosclerotic plaques. This approach may yield several potential regulators of plaque destabilization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3